This commit is contained in:
Jose Luis Montañes Ojados
2026-01-15 16:49:16 +01:00
commit 47b8173045
23 changed files with 2864 additions and 0 deletions

59
pkg/protocol/commands.go Normal file
View File

@@ -0,0 +1,59 @@
package protocol
import (
"strings"
)
// Command Parsing Helpers
func ParseCommand(data []byte) (string, map[string]string) {
s := string(data)
parts := strings.Split(s, " ")
cmd := parts[0]
args := make(map[string]string)
for _, p := range parts[1:] {
kv := strings.SplitN(p, "=", 2)
if len(kv) == 2 {
val := Unescape(kv[1])
args[kv[0]] = val
} else {
args[p] = ""
}
}
return cmd, args
}
// Unescape TS3 string
func Unescape(s string) string {
r := strings.NewReplacer(
`\/`, `/`,
`\s`, ` `,
`\p`, `|`,
`\a`, "\a",
`\b`, "\b",
`\f`, "\f",
`\n`, "\n",
`\r`, "\r",
`\t`, "\t",
`\v`, "\v",
`\\`, `\`,
)
return r.Replace(s)
}
func Escape(s string) string {
r := strings.NewReplacer(
`\`, `\\`,
`/`, `\/`,
` `, `\s`,
`|`, `\p`,
"\a", `\a`,
"\b", `\b`,
"\f", `\f`,
"\n", `\n`,
"\r", `\r`,
"\t", `\t`,
"\v", `\v`,
)
return r.Replace(s)
}

182
pkg/protocol/crypto.go Normal file
View File

@@ -0,0 +1,182 @@
package protocol
import (
"crypto/aes"
"crypto/cipher"
"crypto/sha1"
"crypto/sha256"
"encoding/base64"
"encoding/binary"
"fmt"
)
// Crypto Globals for Handshake (as per spec)
var (
HandshakeMac = [8]byte{0x54, 0x53, 0x33, 0x49, 0x4E, 0x49, 0x54, 0x31} // "TS3INIT1"
HandshakeKey = []byte{0x63, 0x3A, 0x5C, 0x77, 0x69, 0x6E, 0x64, 0x6F, 0x77, 0x73, 0x5C, 0x73, 0x79, 0x73, 0x74, 0x65} // "c:\windows\syste"
HandshakeNonce = []byte{0x6D, 0x5C, 0x66, 0x69, 0x72, 0x65, 0x77, 0x61, 0x6C, 0x6C, 0x33, 0x32, 0x2E, 0x63, 0x70, 0x6C} // "m\firewall32.cpl"
)
// EAX Mode Implementation (AES-CTR + OMAC) -> For simplicity we will use a simplified approach or find a library if possible.
// Since Go doesn't have EAX in standard lib, and we want to avoid complex dependencies if possible for this snippet,
// we'll implement the key generation logic. The EAX encryption usually wraps AES-CTR.
// Important: For a production client, use a verified crypto library.
type CryptoState struct {
SharedIV []byte
SharedMac []byte
GenerationID uint32
}
// GenerateKeyNonce generates the Key and Nonce for EAX encryption/decryption as per section 1.6.2
func (s *CryptoState) GenerateKeyNonce(header *PacketHeader, isClientToServer bool) ([]byte, []byte) {
// 1. Temporary buffer
// length depends on protocol version/logic.
// Spec: "The old protocol SharedIV ... will be 20 bytes long ... new protocol SharedIV ... will have 64 bytes"
// GenerationID starts at 0.
var temp []byte
sivLen := len(s.SharedIV)
if sivLen == 20 {
temp = make([]byte, 26)
} else {
// Spec 1.6.2 New Protocol: 1 (type) + 1 (pt) + 4 (pgid) + 64 (sharedIV) = 70 bytes.
temp = make([]byte, 70)
}
// temp[0] 'c'/'s' logic:
// Spec: "0x30 for Client, 0x31 for Server... Wait.
// "Used for Client -> Server: 0x31"
// "Used for Server -> Client: 0x30"
if isClientToServer {
temp[0] = 0x31
} else { // Client <- Server
temp[0] = 0x30
}
// temp[1] = PT (Base Type only, no flags!)
// ts3j uses getType().getIndex() which is the enum value.
temp[1] = header.Type & 0x0F
// temp[2..6] = PGId (Network Order)
binary.BigEndian.PutUint32(temp[2:6], s.GenerationID)
// Copy SharedIV
// if SIV.length == 20 -> temp[6..26] = SIV[0..20]
// if SIV.length == 64 -> temp[6..70] = SIV[0..64]
copy(temp[6:], s.SharedIV)
// keynonce = sha256(temp)
hash := sha256.Sum256(temp)
key := make([]byte, 16)
nonce := make([]byte, 16)
copy(key, hash[0:16])
copy(nonce, hash[16:32])
// XOR Key with PID
// key[0] = key[0] xor ((PId & 0xFF00) >> 8)
// key[1] = key[1] xor ((PId & 0x00FF) >> 0)
key[0] ^= byte((header.PacketID & 0xFF00) >> 8)
key[1] ^= byte((header.PacketID & 0x00FF))
return key, nonce
}
// Base64 Helpers for TS3
func Base64Encode(data []byte) string {
return base64.StdEncoding.EncodeToString(data)
}
func Base64Decode(s string) ([]byte, error) {
return base64.StdEncoding.DecodeString(s)
}
// SHA1 Helper
func Sha1(data []byte) []byte {
h := sha1.New()
h.Write(data)
return h.Sum(nil)
}
// GenerateHashCash implements the puzzle solver (Section 4.1)
// Finds the level of a public key + offset
func GetHashCashLevel(key []byte, offset uint64) int {
// data = sha1(publicKey + keyOffset)
// Note: Reference implementation concatenates the string representation of offset?
// Spec says: "The key offset is a u64 number, which gets converted to a string when concatenated."
offsetStr := fmt.Sprintf("%d", offset)
buf := append(key, []byte(offsetStr)...)
hash := Sha1(buf)
// Count leading zero bits
level := 0
for _, b := range hash {
if b == 0 {
level += 8
} else {
// Count bits in this byte
for i := 7; i >= 0; i-- {
if (b & (1 << i)) == 0 {
level++
} else {
return level
}
}
break
}
}
return level
}
// Fake encryption for now to proceed until EAX is fully implemented or needed
// The spec requires EAX for commands.
func EncryptPacket(pkt *Packet, key, nonce []byte) error {
// Placeholder: In a real implementation, we would use an EAX implementation here.
// For the initial handshake (Init1 packets), encryption is often disabled or simplified (XOR).
// Reviewing: Init1 packets are NOT encrypted (FlagUnencrypted set).
// Command packets ARE encrypted.
block, err := aes.NewCipher(key)
if err != nil {
return err
}
// Standard CTR implementation (part of EAX)
// EAX components: CTR for encryption, OMAC for authentication (MAC)
// We strictly need the MAC for the packet header.
// For minimal functional requirement "Connect", we might need full EAX if the server enforces it on the first Command.
// For now we will implement standard CTR for the data payload.
// The MAC calculation is complex and requires OMAC1.
stream := cipher.NewCTR(block, nonce)
stream.XORKeyStream(pkt.Data, pkt.Data)
return nil
}
func DecryptPacket(pkt *Packet, key, nonce []byte) error {
block, err := aes.NewCipher(key)
if err != nil {
return err
}
stream := cipher.NewCTR(block, nonce)
stream.XORKeyStream(pkt.Data, pkt.Data)
return nil
}
// Curve25519 Helper
func GenerateECDHKeypair() (public, private [32]byte, err error) {
// Generate private key (use real random in prod)
// For reproduction/dev we might use fixed.
// Actually we need `crypto/rand`
// private = rand(32)
// curve25519.ScalarBaseMult(&public, &private)
return
}

View File

@@ -0,0 +1,101 @@
package protocol
import (
"crypto/sha1"
"crypto/sha512"
"encoding/hex"
"strings"
"testing"
"filippo.io/edwards25519"
)
// Helper to match ts3j hex string decoding
func hexBytes(s string) []byte {
b, _ := hex.DecodeString(s)
return b
}
func TestCryptoInit2_Ts3jVectors(t *testing.T) {
// Vectors from ts3j CryptoInit2Test.java
licenseBytes := hexBytes("0100358541498A24ACD30157918B8F50955C0DAE970AB65372CBE407" +
"415FCF3E029B02084D15E00AA793600700000020416E6F6E796D6F7573000047D9E4DC25AA2E90ACD4DB5FA61C8F" +
"ED369B346D84C2CA2FCCCA86F73AFEF092200A77C8810A787141")
alpha := hexBytes("9500A5DB3B50ACECAB81")
beta := hexBytes("EAFFC9A8BC996B25C8AA700264E99E372ECCDEB1C121D6EC0F4D49FB46" +
"CEEBA4E3C724B3070FD70CB03D7BC08129205690ECE228CA7C")
privateKeyBytes := hexBytes("102E591ABA4508129E812FF3437E2DDD3CA1F1EC341117CA35" +
"14CC347A7C2A77")
expectedIvStructHex := "E4082A92F71C96A947452F5582EF2879B2051ED2D3" +
"F2C6B0643CF5A266EE6B5180573C2F5F3F1C4AC579188366F16AE0EADC3AAF860805D8F2A831E9E49F4513"
expectedFakeSigHex := "54F2B4D661E0F9AB"
// 1. Derive Server Public Key (License)
serverPubBytes, err := ParseLicenseAndDeriveKey(licenseBytes)
if err != nil {
t.Fatalf("ParseLicenseAndDeriveKey failed: %v", err)
}
// 2. Derive Shared Secret (simulating ts3j generateSharedSecret2)
// Load Server Point
serverPoint, err := new(edwards25519.Point).SetBytes(serverPubBytes)
if err != nil {
t.Fatalf("Invalid server pub key derived: %v", err)
}
// Negate Server Point
serverPoint.Negate(serverPoint)
// Create Scalar from private key
scalarBytes := make([]byte, 32)
copy(scalarBytes, privateKeyBytes)
scalarBytes[31] &= 0x7F // ts3j specific masking
// Load Scalar
scalar, err := new(edwards25519.Scalar).SetBytesWithClamping(scalarBytes)
if err != nil {
t.Fatalf("Scalar load failed: %v", err)
}
// Multiply
sharedPoint := new(edwards25519.Point).ScalarMult(scalar, serverPoint)
sharedBytes := sharedPoint.Bytes()
// Flip Sign
sharedBytes[31] ^= 0x80
// Hash
sharedSecret := sha512.Sum512(sharedBytes)
// 3. Calculate IV/Mac
// IV = XOR(SharedSecret, Alpha) ++ XOR(SharedSecret, Beta)
ivStruct := make([]byte, 64)
copy(ivStruct, sharedSecret[:])
for i := 0; i < 10; i++ {
ivStruct[i] ^= alpha[i]
}
if len(beta) < 54 {
t.Fatal("Beta too short")
}
for i := 0; i < 54; i++ {
ivStruct[10+i] ^= beta[i]
}
// FakeSig = SHA1(IV)[0..8]
macHash := sha1.Sum(ivStruct)
fakeSig := macHash[0:8]
// Compare
gotIvHex := hex.EncodeToString(ivStruct)
if !strings.EqualFold(gotIvHex, expectedIvStructHex) {
t.Errorf("IV Struct Mismatch.\nGot: %s\nWant: %s", gotIvHex, expectedIvStructHex)
}
gotSigHex := hex.EncodeToString(fakeSig)
if !strings.EqualFold(gotSigHex, expectedFakeSigHex) {
t.Errorf("FakeSig Mismatch.\nGot: %s\nWant: %s", gotSigHex, expectedFakeSigHex)
}
}

View File

@@ -0,0 +1,56 @@
package protocol
import (
"encoding/base64"
"reflect"
"testing"
)
func TestGenerateKeyNonce(t *testing.T) {
// Vectors from ts3j EncryptionTest.java
ivStructBase64 := "/rn6nR71hV8eFl+15WO68fRU8pOCBw3t0FmcG5c7WNxIkeZ1NtaWTVMBde0cdU5tTKwOl8sE6gpHjnCEF4hhDw=="
expectedKeyBase64 := "BF+lO776+e45u+qYAOHihg=="
expectedNonceBase64 := "1IVcTMuizpDHjQgn2yGCgg=="
ivStruct, _ := base64.StdEncoding.DecodeString(ivStructBase64)
expectedKey, _ := base64.StdEncoding.DecodeString(expectedKeyBase64)
expectedNonce, _ := base64.StdEncoding.DecodeString(expectedNonceBase64)
// CryptoState setup
crypto := &CryptoState{
SharedIV: ivStruct,
GenerationID: 0,
}
// Packet Header setup
// Packet ID = 1
// Type = COMMAND (2)
// Flags = NEW_PROTOCOL (0x20)
// Type in Header struct contains (Type | Flags)
// byte(2) | byte(0x20) = 0x22
header := &PacketHeader{
PacketID: 1,
Type: uint8(PacketTypeCommand) | PacketFlagNewProtocol,
}
// Note: PacketTypeCommand is 0x02. PacketFlagNewProtocol is 0x20.
// Header.Type is uint8.
// Generate (Client -> Server = true)
// ts3j test uses ProtocolRole.CLIENT which maps to 0x31 for temporaryByteBuffer?
// PacketTransformation.java: (header.getRole() == ProtocolRole.SERVER ? 0x30 : 0x31)
// If EncryptionTest creates Packet(ProtocolRole.CLIENT), then header role is CLIENT.
// So byte is 0x31.
// In my crypto.go, GenerateKeyNonce(..., isClientToServer bool).
// If client sends, isClientToServer should be true. (maps to 0x31).
key, nonce := crypto.GenerateKeyNonce(header, true)
if !reflect.DeepEqual(key, expectedKey) {
t.Errorf("Key mismatch.\nGot: %x\nWant: %x", key, expectedKey)
}
if !reflect.DeepEqual(nonce, expectedNonce) {
t.Errorf("Nonce mismatch.\nGot: %x\nWant: %x", nonce, expectedNonce)
}
}

178
pkg/protocol/eax.go Normal file
View File

@@ -0,0 +1,178 @@
package protocol
import (
"crypto/aes"
"crypto/cipher"
"errors"
)
// OMAC1 (CMAC) Implementation for AES-128
// RFC 4493
func shiftLeft(in []byte, out []byte) {
var carry byte
for i := 15; i >= 0; i-- {
b := in[i]
out[i] = (b << 1) | carry
carry = (b >> 7) & 1
}
}
func xorBlock(a, b []byte) {
for i := 0; i < 16; i++ {
a[i] ^= b[i]
}
}
func generateSubkeys(cipherBlock cipher.Block) (k1, k2 []byte) {
l := make([]byte, 16)
cipherBlock.Encrypt(l, make([]byte, 16))
k1 = make([]byte, 16)
shiftLeft(l, k1)
if l[0]&0x80 != 0 {
k1[15] ^= 0x87
}
k2 = make([]byte, 16)
shiftLeft(k1, k2)
if k1[0]&0x80 != 0 {
k2[15] ^= 0x87
}
return
}
func omac1(cipherBlock cipher.Block, data []byte) []byte {
k1, k2 := generateSubkeys(cipherBlock)
n := len(data)
numBlocks := (n + 15) / 16
if numBlocks == 0 {
numBlocks = 1
}
lastBlock := make([]byte, 16)
flagComplete := (n > 0 && n%16 == 0)
if flagComplete {
copy(lastBlock, data[n-16:])
xorBlock(lastBlock, k1)
} else {
remaining := n % 16
copy(lastBlock, data[n-remaining:])
lastBlock[remaining] = 0x80 // padding
xorBlock(lastBlock, k2)
}
x := make([]byte, 16)
y := make([]byte, 16)
for i := 0; i < numBlocks-1; i++ {
copy(y, data[i*16:(i+1)*16])
xorBlock(y, x)
cipherBlock.Encrypt(x, y)
}
xorBlock(x, lastBlock)
cipherBlock.Encrypt(x, x)
return x
}
// EAX implementation functions
// omacWithTag computes OMAC(t || m)
func omacWithTag(block cipher.Block, tag byte, m []byte) []byte {
// EAX uses [t] as prefix for OMAC
// but standard OMAC implies it's just the message.
// EAX spec: OMAC^t_K(M) = OMAC_K ([t]_n || M)
// where n is block size (16).
// We construct a new slice with the prefix
buf := make([]byte, 16+len(m))
buf[15] = tag // The last byte of the first block is the tag?
// Wait, EAX spec: [t]_n is the byte t padded with zeros to block size n.
// Usually it implies the last byte is t, or first?
// "Let [t]_n denote the n-byte string that consists of n-1 zero bytes followed by the byte t."
// So for n=16, 15 zeros then t.
copy(buf[16:], m)
return omac1(block, buf)
}
// EncryptEAX performs EAX encryption and returns ciphertext + mac
// Key and Nonce must be valid for AES-128 (16 bytes).
func EncryptEAX(key, nonce, header, data []byte) (ciphertext []byte, mac []byte, err error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
// 1. Calculate Nonce MAC (N)
// N = OMAC^0_K(Nonce)
nMac := omacWithTag(block, 0, nonce)
// 2. Calculate Header MAC (H)
// H = OMAC^1_K(Header)
hMac := omacWithTag(block, 1, header)
// 3. Encrypt Data (C)
// CTR using N as counter/IV
ciphertext = make([]byte, len(data))
ctrStream := cipher.NewCTR(block, nMac)
ctrStream.XORKeyStream(ciphertext, data)
// 4. Calculate Ciphertext MAC (C_MAC)
// C_MAC = OMAC^2_K(Ciphertext)
cMac := omacWithTag(block, 2, ciphertext)
// 5. Final Tag = N ^ H ^ C_MAC
tag := make([]byte, 16)
for i := 0; i < 16; i++ {
tag[i] = nMac[i] ^ hMac[i] ^ cMac[i]
}
// TS3 uses 8 bytes of the MAC
return ciphertext, tag[:8], nil
}
// DecryptEAX verifies and decrypts
func DecryptEAX(key, nonce, header, data, expectedMac []byte) (plaintext []byte, err error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
// 1. N = OMAC^0_K(Nonce)
nMac := omacWithTag(block, 0, nonce)
// 2. H = OMAC^1_K(Header)
hMac := omacWithTag(block, 1, header)
// 3. C_MAC = OMAC^2_K(Data is Ciphertext here)
cMac := omacWithTag(block, 2, data)
// 4. Calculate Tag
tag := make([]byte, 16)
for i := 0; i < 16; i++ {
tag[i] = nMac[i] ^ hMac[i] ^ cMac[i]
}
// Verify MAC
if len(expectedMac) > 16 {
return nil, errors.New("expected MAC too long")
}
// Constant time compare needed ideally
for i := 0; i < len(expectedMac); i++ {
if tag[i] != expectedMac[i] {
return nil, errors.New("mac verification failed")
}
}
// 5. Decrypt
plaintext = make([]byte, len(data))
ctrStream := cipher.NewCTR(block, nMac)
ctrStream.XORKeyStream(plaintext, data)
return plaintext, nil
}

53
pkg/protocol/eax_test.go Normal file
View File

@@ -0,0 +1,53 @@
package protocol
import (
"crypto/aes"
"encoding/hex"
"reflect"
"testing"
)
func TestOMAC1_RFC4493(t *testing.T) {
// RFC 4493 Test Vectors for AES-128-CMAC
keyHex := "2b7e151628aed2a6abf7158809cf4f3c"
key, _ := hex.DecodeString(keyHex)
block, err := aes.NewCipher(key)
if err != nil {
t.Fatal(err)
}
// Example 1: Empty Message
msg1 := []byte{}
want1Hex := "bb1d6929e95937287fa37d129b756746"
want1, _ := hex.DecodeString(want1Hex)
got1 := omac1(block, msg1)
if !reflect.DeepEqual(got1, want1) {
t.Errorf("OMAC1 Empty Message Mismatch.\nGot: %x\nWant: %x", got1, want1)
}
// Example 2: 16 bytes
msg2Hex := "6bc1bee22e409f96e93d7e117393172a"
msg2, _ := hex.DecodeString(msg2Hex)
want2Hex := "070a16b46b4d4144f79bdd9dd04a287c"
want2, _ := hex.DecodeString(want2Hex)
got2 := omac1(block, msg2)
if !reflect.DeepEqual(got2, want2) {
t.Errorf("OMAC1 16-byte Message Mismatch.\nGot: %x\nWant: %x", got2, want2)
}
// Example 3: 40 bytes (not multiple of 16)
msg3Hex := "6bc1bee22e409f96e93d7e117393172a" +
"ae2d8a571e03ac9c9eb76fac45af8e51" +
"30c81c46a35ce411"
msg3, _ := hex.DecodeString(msg3Hex)
want3Hex := "dfa66747de9ae63030ca32611497c827"
want3, _ := hex.DecodeString(want3Hex)
got3 := omac1(block, msg3)
if !reflect.DeepEqual(got3, want3) {
t.Errorf("OMAC1 40-byte Message Mismatch.\nGot: %x\nWant: %x", got3, want3)
}
}

39
pkg/protocol/enums.go Normal file
View File

@@ -0,0 +1,39 @@
package protocol
// Codec types
const (
CodecSpeexNarrowband = 0
CodecSpeexWideband = 1
CodecSpeexUltrawideband = 2
CodecCeltMono = 3
CodecOpusVoice = 4
CodecOpusMusic = 5
)
// Reason types for events
type ReasonID int
const (
ReasonNone ReasonID = 0
ReasonMoved ReasonID = 1
ReasonSubscription ReasonID = 2
ReasonLostConnection ReasonID = 3
ReasonKickChannel ReasonID = 4
ReasonKickServer ReasonID = 5
ReasonKickServerBan ReasonID = 6
ReasonServerStop ReasonID = 7
ReasonClientDisconnect ReasonID = 8
ReasonChannelUpdate ReasonID = 9
ReasonChannelEdit ReasonID = 10
ReasonClientDisconnectServerShutdown ReasonID = 11
)
// TextMessageTargetMode identifies who receives the message
type TextMessageTargetMode int
const (
TextMessageTarget_Unknown TextMessageTargetMode = 0
TextMessageTarget_Client TextMessageTargetMode = 1
TextMessageTarget_Channel TextMessageTargetMode = 2
TextMessageTarget_Server TextMessageTargetMode = 3
)

152
pkg/protocol/license.go Normal file
View File

@@ -0,0 +1,152 @@
package protocol
import (
"bytes"
"crypto/sha512"
"errors"
"fmt"
"filippo.io/edwards25519"
)
// Root Key (compressed Edwards25519 point)
var LicenseRootKeyBytes = [32]byte{
0xcd, 0x0d, 0xe2, 0xae, 0xd4, 0x63, 0x45, 0x50, 0x9a, 0x7e, 0x3c,
0xfd, 0x8f, 0x68, 0xb3, 0xdc, 0x75, 0x55, 0xb2, 0x9d, 0xcc, 0xec,
0x73, 0xcd, 0x18, 0x75, 0x0f, 0x99, 0x38, 0x12, 0x40, 0x8a,
}
// ParseLicense and derive final Public Key
func ParseLicenseAndDeriveKey(licenseData []byte) ([]byte, error) {
// Header
if len(licenseData) < 1 || licenseData[0] != 0x01 {
return nil, errors.New("invalid license version")
}
reader := bytes.NewReader(licenseData[1:])
// Initialize current key with Root
currentPoint, err := new(edwards25519.Point).SetBytes(LicenseRootKeyBytes[:])
if err != nil {
return nil, fmt.Errorf("failed to load root key: %v", err)
}
// Iterate blocks
for reader.Len() > 0 {
// Calculate Start Position
bytesConsumed := (len(licenseData) - 1) - reader.Len()
blockStartAbs := 1 + bytesConsumed
// Read KeyType
_, err = reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("read keyType failed: %v", err)
}
// Read Public Key
var pubKeyBytes [32]byte
if _, err := reader.Read(pubKeyBytes[:]); err != nil {
return nil, fmt.Errorf("read pubKey failed: %v", err)
}
blockPubKey, err := new(edwards25519.Point).SetBytes(pubKeyBytes[:])
if err != nil {
return nil, fmt.Errorf("invalid block public key: %v", err)
}
// Read Block Type
blockType, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("read blockType failed: %v", err)
}
// Read Dates
dates := make([]byte, 8)
if _, err := reader.Read(dates); err != nil {
return nil, fmt.Errorf("read dates failed: %v", err)
}
// Parse Content
switch blockType {
case 0x00: // Intermediate
// 4 bytes int
tmp := make([]byte, 4)
if _, err := reader.Read(tmp); err != nil {
return nil, fmt.Errorf("read intermediate int failed: %v", err)
}
// String
if _, err := readNullTerminatedString(reader); err != nil {
return nil, fmt.Errorf("read intermediate string failed: %v", err)
}
case 0x01, 0x03: // Website / Code
if _, err := readNullTerminatedString(reader); err != nil {
return nil, err
}
case 0x02: // Server
// 5 bytes
tmp := make([]byte, 5)
if _, err := reader.Read(tmp); err != nil {
return nil, fmt.Errorf("read server data failed: %v", err)
}
if _, err := readNullTerminatedString(reader); err != nil {
return nil, fmt.Errorf("read server string failed: %v", err)
}
case 0x20: // Box
// Ephemeral blocks might be empty content
if reader.Len() > 0 {
if _, err := readNullTerminatedString(reader); err != nil {
return nil, err
}
}
default:
// Fallback
}
// Calculate End for Hashing
bytesConsumedAfter := (len(licenseData) - 1) - reader.Len()
blockEndAbs := 1 + bytesConsumedAfter
hashStart := blockStartAbs + 1
if blockEndAbs <= hashStart {
return nil, errors.New("block too short for hashing")
}
hashableData := licenseData[hashStart:blockEndAbs]
// Calculate SHA512 Hash
hash := sha512.Sum512(hashableData)
var scalarBytes [32]byte
copy(scalarBytes[:], hash[:32]) // Take first 32 bytes
// Clamp the hash
scalarBytes[0] &= 248
scalarBytes[31] &= 127
scalarBytes[31] |= 64
scalar, err := new(edwards25519.Scalar).SetBytesWithClamping(scalarBytes[:])
if err != nil {
return nil, fmt.Errorf("scalar creation failed: %v", err)
}
// Derive: current = current + (blockKey * hash)
term := new(edwards25519.Point).ScalarMult(scalar, blockPubKey)
currentPoint.Add(currentPoint, term)
}
return currentPoint.Bytes(), nil
}
func readNullTerminatedString(r *bytes.Reader) (string, error) {
var data []byte
for {
b, err := r.ReadByte()
if err != nil {
return "", err
}
if b == 0x00 {
break
}
data = append(data, b)
}
return string(data), nil
}

View File

@@ -0,0 +1,56 @@
package protocol
import (
"encoding/base64"
"testing"
)
func TestLicenseDerivation_Ts3jVectors(t *testing.T) {
// Vectors from ts3j LicenseDerivationTest.java
tests := []struct {
name string
license string
expected string
}{
{
name: "Vector 1",
license: "AQA1hUFJiiSs0wFXkYuPUJVcDa6XCrZTcsvkB0Ffzz4CmwIITRXgCqeTYA" +
"cAAAAgQW5vbnltb3VzAADSN9wlGHZEHZvX7ImHoqYezibj5byDh0f4oMsG3afDxyAKePI" +
"VCnma1Q==",
expected: "z/bYm6TmHmuAil/osx8eGi6Oits2vIO4i6Bm13RuiGg=",
},
{
name: "Vector 2",
license: "AQA1hUFJiiSs0wFXkYuPUJVcDa6XCrZTcsvkB0Ffzz4C" +
"mwIITRXgCqeTYAcAAAAgQW5vbnltb3VzAABx1YQfzCiB8b" +
"ZZAdGwXNTLmdhiOpjaH3OOlISy5vrM3iAKePBVCnmZFQ==",
expected: "lrukIi392D7ltdKFp5mURT3Ydk+oWYNjMt3kptbQl6I=",
},
{
name: "Vector 3",
license: "AQA1hUFJiiSs0wFXkYuPUJVcDa6XCrZTcsvkB0Ffzz4CmwIITR" +
"XgCqeTYAcAAAAgQW5vbnltb3VzAAAK5C0l+xtOTAZGEA/GHHOySAUEBmq7fN5" +
"PG7uSGPEADiAKePGHCnmaRw==",
expected: "H+UcEreBUkCWN18nTYZp0QQkQqGA8IqzqvJ5qB225Z8=",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
licenseData, err := base64.StdEncoding.DecodeString(tt.license)
if err != nil {
t.Fatalf("Failed to decode license base64: %v", err)
}
derivedKey, err := ParseLicenseAndDeriveKey(licenseData)
if err != nil {
t.Fatalf("ParseLicenseAndDeriveKey failed: %v", err)
}
derivedKeyBase64 := base64.StdEncoding.EncodeToString(derivedKey)
if derivedKeyBase64 != tt.expected {
t.Errorf("Mismatch.\nGot: %s\nWant: %s", derivedKeyBase64, tt.expected)
}
})
}
}

97
pkg/protocol/math.go Normal file
View File

@@ -0,0 +1,97 @@
package protocol
import (
"crypto/sha1"
"crypto/sha512"
"math/big"
)
// Curve25519 Prime: 2^255 - 19
var P *big.Int
func init() {
P, _ = new(big.Int).SetString("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", 16)
}
// Ed25519 Y (Compressed) to Curve25519 (Montgomery) U
// u = (1 + y) / (1 - y)
func EdwardsToMontgomery(yBytes []byte) ([]byte, error) {
// 1. Decode y (little endian, clamped?)
// "The 32-byte public key is the 32-byte little-endian encoding of the Point."
// High bit is sign of x (ignored for U-coord conv usually?).
// Reverse bytes to big.Int
y := new(big.Int).SetBytes(Reverse(yBytes))
// Clear high bit?
// Ed25519 compressed form: high bit of last byte is X sign.
// y &= ~(1 << 255)
bit255 := big.NewInt(1)
bit255.Lsh(bit255, 255)
if y.Cmp(bit255) >= 0 {
y.Sub(y, bit255)
}
one := big.NewInt(1)
// num = 1 + y
num := new(big.Int).Add(one, y)
num.Mod(num, P)
// den = 1 - y
den := new(big.Int).Sub(one, y)
// Handle negative result for modular arithmetic
if den.Sign() < 0 {
den.Add(den, P)
}
den.Mod(den, P)
// denInv
denInv := new(big.Int).ModInverse(den, P)
// u = num * denInv
u := new(big.Int).Mul(num, denInv)
u.Mod(u, P)
// Encode u (32 bytes little endian)
uBytes := u.Bytes()
uBytesRev := Reverse(uBytes)
// Pad to 32
res := make([]byte, 32)
copy(res, uBytesRev) // Copy into start (little endian usually means LSB at 0?)
// Wait. BigInt Bytes() returns Big Endian.
// Reverse(BigEndian) -> Little Endian.
// If uBytes is shorter than 32, we need to pad ZEROS at the END (high bytes) in Little Endian.
// e.g. Value 1. BigEndian: [1]. Reverse: [1].
// Result [1, 0, 0, ...]
return res, nil
}
func Reverse(b []byte) []byte {
l := len(b)
r := make([]byte, l)
for i := 0; i < l; i++ {
r[i] = b[l-1-i]
}
return r
}
// CalculateSharedSecret inputs:
// serverPubKey (Montgomery U, 32 bytes)
// clientPrivKey (Scalar, 32 bytes)
func CalculateSharedSecret(serverPub, clientPriv []byte) []byte {
// Use x/crypto/curve25519
// ScalarMult(dst, scalar, point)
// Placeholder as logic is in handshake.go currently
return nil
}
// Helper to expand hashes
func Sha1Array(data []byte) [20]byte {
return sha1.Sum(data)
}
func Sha512Array(data []byte) [64]byte {
return sha512.Sum512(data)
}

147
pkg/protocol/packet.go Normal file
View File

@@ -0,0 +1,147 @@
package protocol
import (
"bytes"
"encoding/binary"
"errors"
)
// PacketType represents the type of a TeamSpeak 3 packet.
type PacketType uint8
const (
PacketTypeVoice PacketType = 0x00
PacketTypeVoiceWhisper PacketType = 0x01
PacketTypeCommand PacketType = 0x02
PacketTypeCommandLow PacketType = 0x03
PacketTypePing PacketType = 0x04
PacketTypePong PacketType = 0x05
PacketTypeAck PacketType = 0x06
PacketTypeAckLow PacketType = 0x07
PacketTypeInit1 PacketType = 0x08
)
// Packet Flags
const (
PacketFlagUnencrypted = 0x80
PacketFlagCompressed = 0x40
PacketFlagNewProtocol = 0x20
PacketFlagFragmented = 0x10
)
const (
HeaderSizeClientToServer = 13 // 8 MAC + 2 PID + 2 CID + 1 PT
HeaderSizeServerToClient = 11 // 8 MAC + 2 PID + 1 PT
MACSize = 8
)
// PacketHeader represents the common header fields.
type PacketHeader struct {
MAC [8]byte
PacketID uint16
ClientID uint16 // Only present in Client -> Server
Type uint8 // Contains PacketType and Flags
}
// Packet represents a parsed TeamSpeak 3 packet.
type Packet struct {
Header PacketHeader
Data []byte
}
func (h *PacketHeader) FlagUnencrypted() bool { return h.Type&PacketFlagUnencrypted != 0 }
func (h *PacketHeader) FlagCompressed() bool { return h.Type&PacketFlagCompressed != 0 }
func (h *PacketHeader) FlagNewProtocol() bool { return h.Type&PacketFlagNewProtocol != 0 }
func (h *PacketHeader) FlagFragmented() bool { return h.Type&PacketFlagFragmented != 0 }
func (h *PacketHeader) PacketType() PacketType { return PacketType(h.Type & 0x0F) }
// SetType sets the packet type and preserves flags
func (h *PacketHeader) SetType(pt PacketType) {
flags := h.Type & 0xF0
h.Type = flags | uint8(pt&0x0F)
}
// Encode writes the packet to a byte slice.
func (p *Packet) Encode(isClientToServer bool) ([]byte, error) {
buf := new(bytes.Buffer)
// MAC
buf.Write(p.Header.MAC[:])
// Packet ID
if err := binary.Write(buf, binary.BigEndian, p.Header.PacketID); err != nil {
return nil, err
}
// Client ID (only C->S)
if isClientToServer {
if err := binary.Write(buf, binary.BigEndian, p.Header.ClientID); err != nil {
return nil, err
}
}
// Packet Type
if err := binary.Write(buf, binary.BigEndian, p.Header.Type); err != nil {
return nil, err
}
// Data
buf.Write(p.Data)
return buf.Bytes(), nil
}
// Decode parses a packet from a byte slice.
func Decode(data []byte, isClientToServer bool) (*Packet, error) {
reader := bytes.NewReader(data)
p := &Packet{}
// Check minimum size
minSize := HeaderSizeServerToClient
if isClientToServer {
minSize = HeaderSizeClientToServer
}
if len(data) < minSize {
return nil, errors.New("packet too short")
}
// MAC
if _, err := reader.Read(p.Header.MAC[:]); err != nil {
return nil, err
}
// Packet ID
if err := binary.Read(reader, binary.BigEndian, &p.Header.PacketID); err != nil {
return nil, err
}
// Client ID (only C->S)
if isClientToServer {
if err := binary.Read(reader, binary.BigEndian, &p.Header.ClientID); err != nil {
return nil, err
}
}
// Packet Type
if err := binary.Read(reader, binary.BigEndian, &p.Header.Type); err != nil {
return nil, err
}
// Data
p.Data = make([]byte, reader.Len())
if _, err := reader.Read(p.Data); err != nil {
return nil, err
}
return p, nil
}
func NewPacket(pt PacketType, data []byte) *Packet {
return &Packet{
Header: PacketHeader{
Type: uint8(pt),
MAC: [8]byte{}, // Default empty MAC
},
Data: data,
}
}

118
pkg/transport/socket.go Normal file
View File

@@ -0,0 +1,118 @@
package transport
import (
"fmt"
"net"
"sync"
"time"
"go-ts/pkg/protocol"
)
// TS3Conn handles the UDP connection to the TeamSpeak server.
type TS3Conn struct {
conn *net.UDPConn
readQueue chan *protocol.Packet
closeChan chan struct{}
wg sync.WaitGroup
writeMu sync.Mutex
}
// NewTS3Conn creates a new connection to the specified address.
func NewTS3Conn(address string) (*TS3Conn, error) {
raddr, err := net.ResolveUDPAddr("udp", address)
if err != nil {
return nil, fmt.Errorf("failed to resolve address: %w", err)
}
conn, err := net.DialUDP("udp", nil, raddr)
if err != nil {
return nil, fmt.Errorf("failed to dial UDP: %w", err)
}
ts3c := &TS3Conn{
conn: conn,
readQueue: make(chan *protocol.Packet, 100),
closeChan: make(chan struct{}),
}
ts3c.startReader()
return ts3c, nil
}
func (c *TS3Conn) startReader() {
c.wg.Add(1)
go func() {
defer c.wg.Done()
buf := make([]byte, 2048) // Max packet size should be around 500, but use larger buffer to be safe
for {
select {
case <-c.closeChan:
return
default:
c.conn.SetReadDeadline(time.Now().Add(1 * time.Second))
n, _, err := c.conn.ReadFromUDP(buf)
if err != nil {
if netErr, ok := err.(net.Error); ok && netErr.Timeout() {
continue
}
// If closed, return
select {
case <-c.closeChan:
return
default:
fmt.Printf("Error reading valid UDP packet: %v\n", err)
continue
}
}
// Parse packet
pkt, err := protocol.Decode(buf[:n], false) // Server -> Client
if err != nil {
fmt.Printf("Failed to decode packet: %v\n", err)
continue
}
select {
case c.readQueue <- pkt:
default:
fmt.Println("Read queue full, dropping packet")
}
}
}
}()
}
// SendPacket sends a packet to the server.
func (c *TS3Conn) SendPacket(pkt *protocol.Packet) error {
c.writeMu.Lock()
defer c.writeMu.Unlock()
// Client -> Server
bytes, err := pkt.Encode(true)
if err != nil {
return err
}
_, err = c.conn.Write(bytes)
return err
}
// ReadPacket returns the next received packet channel.
func (c *TS3Conn) PacketChan() <-chan *protocol.Packet {
return c.readQueue
}
// RemoteAddr returns the remote network address.
func (c *TS3Conn) RemoteAddr() net.Addr {
return c.conn.RemoteAddr()
}
// Close closes the connection.
func (c *TS3Conn) Close() error {
close(c.closeChan)
c.conn.Close()
c.wg.Wait()
return nil
}