This commit is contained in:
Jose Luis Montañes Ojados
2026-01-15 16:49:16 +01:00
commit 47b8173045
23 changed files with 2864 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
ts3j/

BIN
cmd/client/client.exe Normal file

Binary file not shown.

41
cmd/client/main.go Normal file
View File

@@ -0,0 +1,41 @@
package main
import (
"flag"
"log"
"os"
"os/signal"
"syscall"
"go-ts/internal/client"
)
func main() {
serverAddr := flag.String("server", "127.0.0.1:9987", "TeamSpeak 3 Server Address")
nickname := flag.String("nickname", "GoCient", "Nickname")
flag.Parse()
log.Printf("Starting TS3 Client...")
log.Printf("Server: %s", *serverAddr)
log.Printf("Nickname: %s", *nickname)
c := client.NewClient(*nickname)
errChan := make(chan error)
go func() {
if err := c.Connect(*serverAddr); err != nil {
errChan <- err
}
}()
// Wait for signals
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT, syscall.SIGTERM)
select {
case err := <-errChan:
log.Fatalf("Client Error: %v", err)
case <-sigChan:
log.Println("Shutting down...")
}
}

332
cmd/fakeserver/main.go Normal file
View File

@@ -0,0 +1,332 @@
package main
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/asn1"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"fmt"
"log"
"math/big"
"net"
"time"
"go-ts/pkg/protocol"
"filippo.io/edwards25519"
)
type ServerState struct {
Step int
A1 [16]byte
A2 [100]byte
Identity *ecdsa.PrivateKey
LicensePriv *edwards25519.Scalar
LicensePub *edwards25519.Point
LicenseBlock []byte
Alpha []byte
Beta []byte
SharedSecret []byte
SharedIV []byte
SharedMac [8]byte
}
func main() {
addr, _ := net.ResolveUDPAddr("udp", ":9988")
conn, _ := net.ListenUDP("udp", addr)
log.Println("FakeServer listening on :9988")
// 1. Generate Server Identity (P-256)
privKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
// 2. Generate Transport/License Key (Ed25519)
var seed [32]byte
rand.Read(seed[:])
lPriv, _ := new(edwards25519.Scalar).SetBytesWithClamping(seed[:])
lPub := new(edwards25519.Point).ScalarBaseMult(lPriv)
// 3. Create 'l' (License Block) - 32 random bytes for now
lData := make([]byte, 32)
rand.Read(lData)
state := &ServerState{
Step: 0,
Identity: privKey,
LicensePriv: lPriv,
LicensePub: lPub,
LicenseBlock: lData,
Alpha: make([]byte, 10),
Beta: make([]byte, 54),
}
rand.Read(state.Alpha)
rand.Read(state.Beta)
rand.Read(state.A2[:])
buf := make([]byte, 4096)
for {
n, rAddr, err := conn.ReadFromUDP(buf)
if err != nil {
continue
}
data := make([]byte, n)
copy(data, buf[:n])
handlePacket(conn, rAddr, data, state)
}
}
func handlePacket(conn *net.UDPConn, addr *net.UDPAddr, data []byte, s *ServerState) {
pkt, err := protocol.Decode(data, true)
if err != nil {
return
}
if pkt.Header.PacketType() == protocol.PacketTypeInit1 {
if len(pkt.Data) > 5 && pkt.Data[4] == 0x00 { // Step 0
log.Println("Recv Step 0, Sending Step 1")
sendStep1(conn, addr, s)
} else if len(pkt.Data) > 5 && pkt.Data[4] == 0x02 { // Step 2
log.Println("Recv Step 2, Sending Step 3")
sendStep3(conn, addr, s)
}
} else if pkt.Header.PacketType() == protocol.PacketTypeCommand {
decrypted, err := decryptHandshake(pkt)
if err == nil {
sStr := string(decrypted)
if len(sStr) > 8 && sStr[0:8] == "clientek" {
log.Printf("Recv clientek (Decrypted): %s", sStr)
if err := s.processClientEk(decrypted); err != nil {
log.Printf("Error processing clientek: %v", err)
} else {
log.Println("Shared Secret Derived. Waiting for clientinit.")
}
sendAck(conn, addr, pkt.Header.PacketID)
return
} else if len(sStr) > 12 && sStr[0:12] == "clientinitiv" {
log.Println("Recv clientinitiv. Sending initivexpand2...")
sendInitivexpand2(conn, addr, s)
return
}
}
if len(s.SharedSecret) > 0 {
s.decryptClientInit(pkt)
} else if err != nil && pkt.Header.FlagUnencrypted() == false {
// log.Printf("Decrypt failed: %v", err)
}
}
}
func decryptHandshake(pkt *protocol.Packet) ([]byte, error) {
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
meta[4] = pkt.Header.Type
return protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
}
func sendStep1(conn *net.UDPConn, addr *net.UDPAddr, s *ServerState) {
buf := new(bytes.Buffer)
binary.Write(buf, binary.BigEndian, int32(time.Now().Unix()))
buf.WriteByte(0x01)
rand.Read(s.A1[:])
buf.Write(s.A1[:])
pkt := protocol.NewPacket(protocol.PacketTypeInit1, buf.Bytes())
pkt.Header.PacketID = 1
copy(pkt.Header.MAC[:], []byte("TS3INIT1"))
encoded, _ := pkt.Encode(false)
conn.WriteToUDP(encoded, addr)
}
func sendStep3(conn *net.UDPConn, addr *net.UDPAddr, s *ServerState) {
buf := new(bytes.Buffer)
binary.Write(buf, binary.BigEndian, int32(time.Now().Unix()))
buf.WriteByte(0x03)
x := make([]byte, 64)
rand.Read(x)
n := make([]byte, 64)
rand.Read(n)
buf.Write(x)
buf.Write(n)
binary.Write(buf, binary.BigEndian, uint32(0))
buf.Write(s.A2[:])
pkt := protocol.NewPacket(protocol.PacketTypeInit1, buf.Bytes())
pkt.Header.PacketID = 2
copy(pkt.Header.MAC[:], []byte("TS3INIT1"))
encoded, _ := pkt.Encode(false)
conn.WriteToUDP(encoded, addr)
}
func sendInitivexpand2(conn *net.UDPConn, addr *net.UDPAddr, s *ServerState) {
lStr := base64.StdEncoding.EncodeToString(s.LicenseBlock)
base64.StdEncoding.EncodeToString(s.Beta) // unused?
betaStr := base64.StdEncoding.EncodeToString(s.Beta)
// Encode Omega (P-256 Public Key)
pub := s.Identity.PublicKey
omegaBytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
omegaStr := base64.StdEncoding.EncodeToString(omegaBytes)
// Create Proof: Sign(SHA256(lBytes)) with Identity
hash := sha256.Sum256(s.LicenseBlock)
r, sb, err := ecdsa.Sign(rand.Reader, s.Identity, hash[:])
if err != nil {
log.Printf("Signing failed: %v", err)
}
type ECDSASignature struct {
R, S *big.Int
}
sig := ECDSASignature{R: r, S: sb}
proofBytes, _ := asn1.Marshal(sig)
proofStr := base64.StdEncoding.EncodeToString(proofBytes)
// Send command
cmd := fmt.Sprintf("initivexpand2 l=%s beta=%s omega=%s ot=1 proof=%s tvd=C",
lStr, betaStr, omegaStr, proofStr)
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
pkt.Header.PacketID = 3
// Encrypt with HandshakeKey
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
// Meta S->C (3 bytes: PID(2)+Type(1))
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
encoded, _ := pkt.Encode(false)
conn.WriteToUDP(encoded, addr)
}
func sendAck(conn *net.UDPConn, addr *net.UDPAddr, pid uint16) {
pkt := protocol.NewPacket(protocol.PacketTypeAck, nil)
pkt.Header.PacketID = pid
// Encrypt ACK
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pid)
meta[2] = pkt.Header.Type
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
encoded, _ := pkt.Encode(false)
conn.WriteToUDP(encoded, addr)
}
func (s *ServerState) deriveSharedSecret(clientEkPub []byte) error {
clientPoint, err := new(edwards25519.Point).SetBytes(clientEkPub)
if err != nil {
return fmt.Errorf("invalid client point: %v", err)
}
// Server negates client point
clientPoint.Negate(clientPoint)
sharedPoint := new(edwards25519.Point).ScalarMult(s.LicensePriv, clientPoint)
sharedBytes := sharedPoint.Bytes()
sharedBytes[31] ^= 0x80
hash := sha512.Sum512(sharedBytes)
s.SharedSecret = hash[:]
s.SharedIV = make([]byte, 64)
copy(s.SharedIV, s.SharedSecret)
for i := 0; i < 10; i++ {
s.SharedIV[i] ^= s.Alpha[i]
}
if len(s.Beta) >= 54 {
for i := 0; i < 54; i++ {
s.SharedIV[10+i] ^= s.Beta[i]
}
}
macHash := sha1.Sum(s.SharedIV)
copy(s.SharedMac[:], macHash[0:8])
log.Printf("Shared Secret Derived! IV: %s", hex.EncodeToString(s.SharedIV))
return nil
}
func (s *ServerState) processClientEk(data []byte) error {
str := string(data)
start := "ek="
idx := 0
for i := 0; i < len(str)-len(start); i++ {
if str[i:i+3] == start {
idx = i + 3
break
}
}
if idx == 0 {
return fmt.Errorf("no ek found")
}
end := idx
for i := idx; i < len(str); i++ {
if str[i] == ' ' {
end = i
break
}
}
ekStr := str[idx:end]
ekBytes, err := base64.StdEncoding.DecodeString(ekStr)
if err != nil {
return err
}
return s.deriveSharedSecret(ekBytes)
}
func (s *ServerState) decryptClientInit(pkt *protocol.Packet) {
crypto := &protocol.CryptoState{
SharedIV: s.SharedIV,
SharedMac: s.SharedMac[:],
GenerationID: 0,
}
key, nonce := crypto.GenerateKeyNonce(&pkt.Header, true) // isClientToServer
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
meta[4] = pkt.Header.Type
dec, err := protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
log.Printf("Decryption Failed: %v", err)
return
}
log.Printf(">>> DECRYPTED CLIENTINIT <<<\n%s\n", string(dec))
}

138
cmd/proxy/main_design.go Normal file
View File

@@ -0,0 +1,138 @@
package main
import (
"flag"
"log"
"net"
"strings"
)
// TS3 Proxy to capture clientinit parameters
func main() {
var localAddr string
var serverAddr string
flag.StringVar(&localAddr, "listen", ":9988", "Local listen address")
flag.StringVar(&serverAddr, "server", "localhost:9987", "Real TeamSpeak server address")
flag.Parse()
// Resolve addresses
localUDP, err := net.ResolveUDPAddr("udp", localAddr)
if err != nil {
log.Fatalf("Invalid local address: %v", err)
}
serverUDP, err := net.ResolveUDPAddr("udp", serverAddr)
if err != nil {
log.Fatalf("Invalid server address: %v", err)
}
// Listen on local port
conn, err := net.ListenUDP("udp", localUDP)
if err != nil {
log.Fatalf("Failed to listen: %v", err)
}
defer conn.Close()
log.Printf("Proxy listening on %s, forwarding to %s", localAddr, serverAddr)
log.Println("Connect your Real TeamSpeak Client to 'localhost:9988' to capture credentials.")
// Map client addresses to server connections (for multiple clients support, simplifying for 1)
// Simple forwarder: We only expect one client for this task.
var clientAddr *net.UDPAddr
buf := make([]byte, 2048)
for {
n, addr, err := conn.ReadFromUDP(buf)
if err != nil {
log.Printf("Read error: %v", err)
continue
}
// Check if packet is from client or server
if clientAddr == nil || addr.String() != clientAddr.String() {
// New client or client packet
// If it's from our known server (unlikely as we don't bind to serverAddr), it's a client.
// But wait, we are listening on localUDP.
// We need to dial the server to forward.
// We'll use a separate socket to talk to the server to keep track of sessions?
// Simplest UDP proxy:
// 1. Receive from Client -> Send to Server (using a dialer)
// 2. Receive from Server -> Send to Client
// Let's reset for new clients to keep it simple
clientAddr = addr
handleClientPacket(conn, serverUDP, buf[:n], addr)
} else {
// Known client
handleClientPacket(conn, serverUDP, buf[:n], addr)
}
}
}
// We need a persistent connection to the server to receive responses
// In a simple loop, we can't easily run two blocking reads (from client and from server) without goroutines.
// Let's structure:
// Main loop reads from Client (ListenUDP).
// On first packet, start a Goroutine that Dials the Server.
// That goroutine reads from Server and writes to Client.
// Main loop writes to Server using that connection.
var serverConn *net.UDPConn
func handleClientPacket(clientConn *net.UDPConn, serverAddr *net.UDPAddr, data []byte, clientAddr *net.UDPAddr) {
// Inspect Packet for clientinit strings (Naive text search)
// clientinit is encrypted in standard flow?
// WAIT. If we proxy, the client and server negotiate encryption.
// We CANNOT decrypt the traffic unless we perform a MitM attack on the Diffie-Hellman handshake.
// TS3 uses ECDH. We cannot derive the shared secret just by passively observing.
// We would need to:
// 1. Intercept `initivexpand2` (Step 2/3/4?)
// 2. Replace the Server's Public Key with OUR Public Key.
// 3. Negotiate SharedSecret1 with Client.
// 4. Negotiate SharedSecret2 with Server (using our Private Key).
// 5. Decrypt Client packet -> Re-encrypt for Server.
// This is significantly complex.
// BUT, `clientinit` might be sent *plaintext* in some legacy modes?
// No, the user's issue is specifically about the encrypted handshake.
// However, `client_version` is sometimes sent in cleartext in the INIT1 packet?
// No, INIT1 is just 4 timestamps + random bytes.
// WAIT. The very first packet is valid?
// `clientinit` is sent AFTER the handshake (Step 6). It is definitely encrypted.
// If the user connects with a real client, the client calculates the SharedSecret using the REAL server's key.
// We verify the packets pass through.
// WE CANNOT READ THE PAYLOAD without a full MitM (replacing keys).
// IS THERE ANOTHER WAY?
// Does the client send version in clear text anywhere?
// Maybe in the UserAgent? (UDP doesn't have headers like HTTP)
// Proposal: Implement Full MitM.
// We already have the ECDH logic implemented in Go!
// We can act as the "Server" to the Client, and "Client" to the Server.
// 1. Client connects to Proxy. Proxy acts as Server.
// 2. Proxy sends its OWN Identity/Key to Client.
// 3. Proxy connects to Real Server.
// 4. Proxy completes handshake with Real Server.
// 5. Client completes handshake with Proxy.
// 6. Proxy decrypts Client's `clientinit`, LOGS IT, then re-encrypts for Server.
// This is the chosen path. It reuses our `handshake.go` and `license.go` logic.
inspectPacket(data)
// Forwarding logic placeholder (Passive won't work for decryption)
}
func inspectPacket(data []byte) {
// Check for "clientinit" ASCII pattern
s := string(data)
if strings.Contains(s, "clientinit") {
log.Printf("[!] FOUND POSSIBLE CLIENTINIT (Plaintext?): %s", s)
}
}

23
docker-compose.yml Normal file
View File

@@ -0,0 +1,23 @@
version: "3.9"
services:
teamspeak:
image: teamspeak:3.13
container_name: ts3-server
restart: unless-stopped
ports:
- "9987:9987/udp" # Voice
- "10011:10011" # ServerQuery
- "30033:30033" # FileTransfer
environment:
TS3SERVER_LICENSE: accept
volumes:
- ts3-data:/var/ts3server
logging:
driver: "json-file"
options:
max-size: "10m"
max-file: "3"
volumes:
ts3-data:

9
go.mod Normal file
View File

@@ -0,0 +1,9 @@
module go-ts
go 1.24.0
toolchain go1.24.11
require filippo.io/edwards25519 v1.1.0
require golang.org/x/crypto v0.47.0 // indirect

4
go.sum Normal file
View File

@@ -0,0 +1,4 @@
filippo.io/edwards25519 v1.1.0 h1:FNf4tywRC1HmFuKW5xopWpigGjJKiJSV0Cqo0cJWDaA=
filippo.io/edwards25519 v1.1.0/go.mod h1:BxyFTGdWcka3PhytdK4V28tE5sGfRvvvRV7EaN4VDT4=
golang.org/x/crypto v0.47.0 h1:V6e3FRj+n4dbpw86FJ8Fv7XVOql7TEwpHapKoMJ/GO8=
golang.org/x/crypto v0.47.0/go.mod h1:ff3Y9VzzKbwSSEzWqJsJVBnWmRwRSHt/6Op5n9bQc4A=

563
internal/client/client.go Normal file
View File

@@ -0,0 +1,563 @@
package client
import (
"bytes"
"encoding/binary"
"fmt"
"log"
"strings"
"time"
"go-ts/pkg/protocol"
"go-ts/pkg/transport"
)
type Channel struct {
ID uint64
ParentID uint64
Name string
Order uint64
}
type Client struct {
Conn *transport.TS3Conn
Handshake *HandshakeState
Nickname string
ClientID uint16
// Counters
PacketIDCounterC2S uint16
// State
Connected bool
// Server Data
Channels map[uint64]*Channel
}
func NewClient(nickname string) *Client {
return &Client{
Nickname: nickname,
PacketIDCounterC2S: 1,
Channels: make(map[uint64]*Channel),
}
}
func (c *Client) Connect(address string) error {
conn, err := transport.NewTS3Conn(address)
if err != nil {
return err
}
c.Conn = conn
// Initialize handshake state
hs, err := NewHandshakeState(c.Conn)
if err != nil {
return err
}
c.Handshake = hs
// Improve Identity Security Level to 8 (Standard Requirement)
c.Handshake.ImproveSecurityLevel(8)
log.Println("Connected to UDP. Starting Handshake...")
// Start Handshake Flow
// Step 0
if err := c.Handshake.SendPacket0(); err != nil {
return err
}
// Read Loop for Handshake
timeout := time.After(5 * time.Second)
for !c.Connected {
select {
case pkt := <-c.Conn.PacketChan():
if err := c.handlePacket(pkt); err != nil {
log.Printf("Error handling packet: %v", err)
}
case <-timeout:
return fmt.Errorf("connection timed out")
}
}
log.Println("=== Connected! Now listening for server data... ===")
// Send Ping every 3 seconds
ticker := time.NewTicker(3 * time.Second)
defer ticker.Stop()
// KeepAlive Loop
for {
select {
case pkt := <-c.Conn.PacketChan():
if err := c.handlePacket(pkt); err != nil {
log.Printf("Error handling packet: %v", err)
}
case <-ticker.C:
// Send Ping
c.PacketIDCounterC2S++
ping := protocol.NewPacket(protocol.PacketTypePing, nil)
ping.Header.PacketID = c.PacketIDCounterC2S
ping.Header.ClientID = c.ClientID // Should be assigned by server usually, but we use 0 or what?
// Encrypt Ping (if past handshake)
// For now, assuming unencrypted ping is ignored or we need to encrypt it if in full session
// Protocol says: "Everything is encrypted"
// Using correct keys...
// Actually handlePacket sends PONG. We need to Initiate PING?
// Simplified: Just printing "Ping" for now, or just wait for server to Ping us.
// The server usually pings. We must reply Pong.
// BUT if we don't send anything, we might time out.
// Let's rely on Server Pings for now, but remove the 5s exit timeout.
}
}
}
func (c *Client) handlePacket(pkt *protocol.Packet) error {
log.Printf("Received Packet: ID=%d, Type=%v, Len=%d", pkt.Header.PacketID, pkt.Header.PacketType(), len(pkt.Data))
switch pkt.Header.PacketType() {
case protocol.PacketTypeInit1:
return c.handleInit(pkt)
case protocol.PacketTypeCommand:
// Send ACK
// Ack Data: PacketID of the packet we're acknowledging (2 bytes)
ackData := make([]byte, 2)
binary.BigEndian.PutUint16(ackData, pkt.Header.PacketID)
ack := protocol.NewPacket(protocol.PacketTypeAck, ackData)
// ACK header PacketID should match the packet being acknowledged
ack.Header.PacketID = pkt.Header.PacketID
// ACKs for Command packets during handshake are encrypted with HandshakeKey
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], ack.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], ack.Header.ClientID) // ClientID (usually 0 during handshake)
meta[4] = ack.Header.Type
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, ack.Data)
ack.Data = encData
copy(ack.Header.MAC[:], mac)
log.Printf("Sending ACK for PacketID %d", pkt.Header.PacketID)
c.Conn.SendPacket(ack)
return c.handleCommand(pkt)
case protocol.PacketTypeVoice:
c.handleVoice(pkt)
case protocol.PacketTypePing:
// Respond with Pong
pong := protocol.NewPacket(protocol.PacketTypePong, nil)
pong.Header.PacketID = pkt.Header.PacketID // Acknowledgement
pong.Header.MAC = pkt.Header.MAC // TODO: calculate real mac
c.Conn.SendPacket(pong)
case protocol.PacketTypeAck:
// Server acknowledged our packet - ACKs are encrypted
// Decrypt with HandshakeKey
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
meta := make([]byte, 3) // Server->Client is 3 bytes
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type
data, err := protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
log.Printf("ACK decryption failed: %v", err)
return nil
}
ackPId := uint16(0)
if len(data) >= 2 {
ackPId = binary.BigEndian.Uint16(data[0:2])
}
log.Printf("Received ACK for PacketID %d", ackPId)
// If ACK is for clientek (PID=1), proceed with clientinit
if ackPId == 1 && c.Handshake != nil && c.Handshake.Step == 5 {
log.Println("clientek acknowledged! Sending clientinit...")
c.Handshake.Step = 6
return c.sendClientInit()
}
// If ACK is for clientinit (PID=2), we're connected!
if ackPId == 2 && c.Handshake != nil && c.Handshake.Step == 6 {
log.Println("clientinit acknowledged! Connection established!")
c.Connected = true
}
}
return nil
}
func (c *Client) handleInit(pkt *protocol.Packet) error {
// Determine step based on packet content or local state
// Simple state machine
if c.Handshake.Step == 0 {
if err := c.Handshake.HandlePacket1(pkt); err != nil {
return err
}
log.Println("Handshake Step 1 Completed. Sending Step 2...")
return c.Handshake.SendPacket2()
} else if c.Handshake.Step == 1 {
// Wait, step 1 is processed, we sent step 2.
// We expect Step 3.
if pkt.Data[0] == 0x03 {
if err := c.Handshake.HandlePacket3(pkt); err != nil {
return err
}
log.Println("Handshake Step 3 Completed. Sending Step 4 (Puzzle Solution)...")
// Send Packet 4 (Not fully implemented in this snippet due to puzzle complexity)
// c.Handshake.SendPacket4()
}
}
return nil
}
func (c *Client) handleCommand(pkt *protocol.Packet) error {
// Check if Encrypted
// PacketTypeCommand is usually encrypted.
// Flag check? The flag is in the Header (e.g. Unencrypted flag).
// If Unencrypted flag is SET, it's cleartext.
// Spec: "Command ... Encrypted: ✓". So Unencrypted flag is CLEARED.
// Decrypt if necessary
var data []byte
var err error
if pkt.Header.FlagUnencrypted() {
data = pkt.Data
} else {
var key, nonce []byte
decrypted := false
// 1. Try SharedSecret if available
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
// Use SharedSecret-based encryption
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
// Server->Client = false
key, nonce = crypto.GenerateKeyNonce(&pkt.Header, false)
// AAD for Server->Client: PacketID (2) + Type|Flags (1)
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type // Type includes Flags
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err == nil {
decrypted = true
} else {
log.Printf("SharedSecret decrypt failed (PID=%d): %v. Trying HandshakeKey...", pkt.Header.PacketID, err)
}
}
// 2. Fallback to HandshakeKey
if !decrypted {
key = protocol.HandshakeKey[:]
nonce = protocol.HandshakeNonce[:]
// AAD matching KeyNonce derivation context?
// HandshakeKey usage usually has same AAD requirements?
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type // Type includes Flags
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
log.Printf("All decryption attempts failed for PID=%d: %v", pkt.Header.PacketID, err)
return fmt.Errorf("decryption failed: %v", err)
}
}
}
// On first encrypted command set Connected = true (Fallback if ACK missed)
if !c.Connected && pkt.Header.PacketID > 2 {
c.Connected = true
}
cmdStr := string(data)
// Fix Garbage Headers (TS3 often sends binary garbage before command)
// Scan for first valid lower case [a-z] char (Most commands are lowercase)
validStart := strings.IndexFunc(cmdStr, func(r rune) bool {
return (r >= 'a' && r <= 'z')
})
if validStart > 0 && validStart < 50 {
cmdStr = cmdStr[validStart:]
}
log.Printf("Command: %s", cmdStr)
// Parse Command
cmd, args := protocol.ParseCommand([]byte(cmdStr))
switch cmd {
case "initivexpand2":
err := c.Handshake.ProcessInitivexpand2(args)
if err != nil {
log.Printf("Error processing initivexpand2: %v", err)
}
case "initserver":
// Server sends this after clientinit - contains our clientID
if cid, ok := args["aclid"]; ok {
var id uint64
fmt.Sscanf(cid, "%d", &id)
c.ClientID = uint16(id)
log.Printf("Assigned ClientID: %d", c.ClientID)
}
if name, ok := args["virtualserver_name"]; ok {
log.Printf("Server Name: %s", protocol.Unescape(name))
}
case "channellist":
// Parse channel info
ch := &Channel{}
if cid, ok := args["cid"]; ok {
fmt.Sscanf(cid, "%d", &ch.ID)
}
if pid, ok := args["cpid"]; ok {
fmt.Sscanf(pid, "%d", &ch.ParentID)
}
if name, ok := args["channel_name"]; ok {
ch.Name = protocol.Unescape(name)
}
if order, ok := args["channel_order"]; ok {
fmt.Sscanf(order, "%d", &ch.Order)
}
c.Channels[ch.ID] = ch
log.Printf("Channel: [%d] NameRaw=%q Order=%d Args=%v", ch.ID, ch.Name, ch.Order, args)
case "channellistfinished":
log.Printf("=== Channel List Complete (%d channels) ===", len(c.Channels))
var targetChan *Channel
for _, ch := range c.Channels {
log.Printf(" - [%d] %s (parent=%d)", ch.ID, ch.Name, ch.ParentID)
if ch.Name == "Test" {
targetChan = ch
}
}
if targetChan != nil {
log.Printf("Found target channel 'Test' (ID=%d). Joining...", targetChan.ID)
if c.ClientID == 0 {
log.Println("ERROR: ClientID is 0. Cannot join channel. 'initserver' missing?")
return nil
}
// clientmove clid={clid} cid={cid} cpw=
cmd := fmt.Sprintf("clientmove clid=%d cid=%d cpw=", c.ClientID, targetChan.ID)
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
// Encrypt
// key, nonce, mac, _ := c.getCryptoState() // Unused
// Meta
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], c.PacketIDCounterC2S+1) // Next ID
pkt.Header.PacketID = c.PacketIDCounterC2S + 1
c.PacketIDCounterC2S++
binary.BigEndian.PutUint16(meta[2:4], c.ClientID)
meta[4] = pkt.Header.Type
// TODO: Use correct crypto keys (SharedSecret if available)
// My getCryptoState returns correct ones?
// Let's manually do it to match sendClientInit logic for now or refactor later.
// Actually, if we are in Full Session, we should use SharedSecret.
// Handshake Step 6 -> SharedSecret.
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
k, n := crypto.GenerateKeyNonce(&pkt.Header, true)
encData, mac, _ := protocol.EncryptEAX(k, n, meta, pkt.Data)
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
c.Conn.SendPacket(pkt)
}
case "notifycliententerview":
// A client entered the server
if nick, ok := args["client_nickname"]; ok {
log.Printf("Client entered: %s", protocol.Unescape(nick))
}
case "notifytextmessage":
if msg, ok := args["msg"]; ok {
log.Printf("Text Message: %s", protocol.Unescape(msg))
}
case "notifychannelgrouplist":
// Ignore for now
case "notifyservergrouplist":
// Ignore for now
case "notifyclientneededpermissions":
// Ignore for now
case "notifyclientleftview":
if nick, ok := args["client_nickname"]; ok {
log.Printf("Client left: %s", protocol.Unescape(nick))
}
case "notifyconnectioninfo":
// Ignore
case "badges":
// Server badges info
case "notifyclientchatcomposing":
if nick, ok := args["client_nickname"]; ok {
// This often comes as clid, need to lookup in future
log.Printf("Client typing: %s", protocol.Unescape(nick))
}
case "notifyclientmoved":
if nick, ok := args["client_nickname"]; ok {
log.Printf("Client moved: %s", protocol.Unescape(nick))
}
case "error":
if id, ok := args["id"]; ok && id == "522" {
log.Println("WARNING: Server rejected client version (Error 522). Ignoring as requested.")
// We pretend we are connected?
// The server might not send further data, but we won't crash.
c.Connected = true
} else {
log.Printf("Server Error: %v", args)
}
default:
// Handle prefixes for weirdly updated commands
if strings.HasPrefix(cmd, "badges") {
// ignore badges garbage
log.Println("Received Badges (Ignored)")
return nil
}
// Log unknown commands for debugging
log.Printf("Unhandled command: %s", cmd)
}
return nil
}
// Helper to encrypt/decrypt based on state
func (c *Client) getCryptoState() (key, nonce, mac []byte, isHandshake bool) {
if c.Handshake != nil && len(c.Handshake.SharedSecret) > 0 {
// Use Derived Keys
// But we need to Generate Key/Nonce per packet!
// This logic belongs in the Packet Encode/Decode flow or a higher level wrapper?
return nil, nil, c.Handshake.SharedMac, false
}
return protocol.HandshakeKey, protocol.HandshakeNonce, protocol.HandshakeMac[:], true
}
// Update encryption in Send/Receive
// Packet handling needs to know WHICH key to use.
// Simple rule:
// - Init1 (Type 8): Handshake Keys (Unencrypted payload, but MAC is HandshakeMac)
// - Command (Type 2): Encrypted.
// - CommandLow (Type 3): Encrypted.
// - Voice (Type 0): Encrypted.
// - Ping/Pong: Encrypted.
// - Ack: Encrypted.
// IF c.Handshake.SharedSecret is set, we SHOULD use it for Commands?
// "The crypto handshake is now completed. The normal encryption scheme ... is from now on used."
// This starts AFTER clientek? Or WITH clientek? "clientek already has the packet id 1"
func (c *Client) handleVoice(pkt *protocol.Packet) {
// Parse Voice Header
// 2 bytes VID, 1 byte Codec, Data
if len(pkt.Data) < 3 {
return
}
// vid := binary.BigEndian.Uint16(pkt.Data[0:2])
// codec := pkt.Data[2]
voiceData := pkt.Data[3:]
// Calculate "Volume" (RMS of encrypted/compressed data is meaningless, but existing requirement asks for it)
// To do this properly, we need to decrypt -> decode[Opus] -> PCM -> RMS.
// For "Eco" (Echo), we can just re-wrap this data and send it back.
vol := len(voiceData) // Placeholder "volume"
log.Printf("Voice Packet received. Approx Size/Vol: %d", vol)
// Echo back
// Client -> Server Voice Packet
// VID + Codec + Data
// We can reuse the data payload structure mostly?
// C->S: VID(2) + Codec(1) + Data
echoPkt := protocol.NewPacket(protocol.PacketTypeVoice, pkt.Data)
// ID Counter handling?
c.Conn.SendPacket(echoPkt)
}
func (c *Client) sendClientInit() error {
// Build clientinit command
// Build clientinit command using TeamSpeak 3.6.2 credentials
params := map[string]string{
"client_nickname": c.Nickname,
"client_version": "3.6.2 [Build: 1690976575]",
"client_platform": "Windows",
"client_input_hardware": "1",
"client_output_hardware": "1",
"client_default_channel": "",
"client_default_channel_password": "",
"client_server_password": "",
"client_meta_data": "",
"client_version_sign": "OyuLO/1bVJtBsXLRWzfGVhNaQd7B9D4QTolZm14DM1uCbSXVvqX3Ssym3sLi/PcvOl+SAUlX6NwBPOsQdwOGDw==",
"client_key_offset": fmt.Sprintf("%d", c.Handshake.IdentityOffset),
"client_nickname_phonetic": "",
"client_default_token": "",
"hwid": "1234567890",
}
// Construct command string manually to ensure key correctness
var buf bytes.Buffer
buf.WriteString("clientinit")
for k, v := range params {
buf.WriteString(" ")
buf.WriteString(k)
buf.WriteString("=")
buf.WriteString(protocol.Escape(v))
}
cmd := buf.String()
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
pkt.Header.PacketID = 2 // After clientek (1)
pkt.Header.Type |= protocol.PacketFlagNewProtocol
// After clientek, use SharedSecret encryption (Now that we fixed derivation logic)
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
// Client->Server = true
key, nonce := crypto.GenerateKeyNonce(&pkt.Header, true)
// AAD must match the header structure exactly (excluding MAC)
// Client Header: PacketID (2) + ClientID (2) + Type|Flags (1)
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
// Byte 4 is Type (which includes Flags)
meta[4] = pkt.Header.Type
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
if err != nil {
return err
}
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
log.Println("Sending clientinit (Packet 2) [Encrypted with SharedSecret]...")
return c.Conn.SendPacket(pkt)
}

View File

@@ -0,0 +1,504 @@
package client
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"log"
"math/big"
"net"
"time"
// Unused but placeholder
"go-ts/pkg/protocol"
"go-ts/pkg/transport"
"filippo.io/edwards25519"
)
// HandshakeState tracks the progress of the connection initialization.
type HandshakeState struct {
Step int
// Init Cookies/Buffers
A0 [4]byte
A1 [16]byte
A2 [100]byte
// Puzzle Data
X *big.Int
N *big.Int
Level uint32
// Identity
IdentityKey *ecdsa.PrivateKey
Alpha []byte // 10 random bytes
// Server Data
Beta []byte
Omega []byte // Server Public Key (DER)
License []byte
// Crypto
ClientEkPub [32]byte
ClientEkPriv [32]byte
ClientScalar *edwards25519.Scalar // Client ephemeral private key (scalar)
SharedSecret []byte
SharedIV []byte
SharedMac []byte
IdentityOffset uint64 // Extracted/Mined offset
IdentityLevel int
Conn *transport.TS3Conn
}
func NewHandshakeState(conn *transport.TS3Conn) (*HandshakeState, error) {
// Generate Identity On Startup (or load from disk in future)
privKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return nil, fmt.Errorf("failed to generate identity key: %v", err)
}
alpha := make([]byte, 10)
if _, err := rand.Read(alpha); err != nil {
return nil, fmt.Errorf("failed to generate alpha: %v", err)
}
// Generate Client Ephemeral Key (TS3 Style)
// TS3 uses a random 32-byte scalar with the high bit masked (&= 0x7F).
// It does NOT use standard Ed25519 clamping (bits 0-2 cleared, bit 254 set).
var clientScalar *edwards25519.Scalar
var clientKeyBytes [32]byte
for {
if _, err := rand.Read(clientKeyBytes[:]); err != nil {
return nil, err
}
clientKeyBytes[31] &= 0x7F // Mask high bit (positive scalar)
// Try to load as scalar. Might fail if >= L (very unlikely)
clientScalar, err = new(edwards25519.Scalar).SetCanonicalBytes(clientKeyBytes[:])
if err == nil {
break
}
}
return &HandshakeState{
Step: 0,
Conn: conn,
IdentityKey: privKey,
Alpha: alpha,
ClientScalar: clientScalar,
}, nil
}
// ... SendPacket0, HandlePacket1, SendPacket2, HandlePacket3 logic unchanged ...
// (Omitting for brevity if replacing, but user asked for full file usually.
// Just including necessary parts and new methods)
func (h *HandshakeState) SendPacket0() error {
buf := new(bytes.Buffer)
ts := int32(time.Now().Unix()) - 1356998400
binary.Write(buf, binary.BigEndian, ts)
buf.WriteByte(0x00) // Step 0
now := int32(time.Now().Unix())
binary.Write(buf, binary.BigEndian, now)
rand.Read(h.A0[:])
buf.Write(h.A0[:])
buf.Write(make([]byte, 8)) // 8 Zeros
pkt := protocol.NewPacket(protocol.PacketTypeInit1, buf.Bytes())
pkt.Header.PacketID = 101
pkt.Header.ClientID = 0
pkt.Header.MAC = protocol.HandshakeMac
return h.Conn.SendPacket(pkt)
}
func (h *HandshakeState) HandlePacket1(pkt *protocol.Packet) error {
if len(pkt.Data) < 21 {
return fmt.Errorf("packet 1 too short")
}
if pkt.Data[0] != 0x01 {
return fmt.Errorf("expected step 1, got %d", pkt.Data[0])
}
copy(h.A1[:], pkt.Data[1:17])
h.Step = 1
return nil
}
func (h *HandshakeState) SendPacket2() error {
buf := new(bytes.Buffer)
ts := int32(time.Now().Unix()) - 1356998400
binary.Write(buf, binary.BigEndian, ts)
buf.WriteByte(0x02) // Step 2
buf.Write(h.A1[:])
a0Rev := [4]byte{h.A0[3], h.A0[2], h.A0[1], h.A0[0]}
buf.Write(a0Rev[:])
pkt := protocol.NewPacket(protocol.PacketTypeInit1, buf.Bytes())
pkt.Header.PacketID = 102
pkt.Header.MAC = protocol.HandshakeMac
return h.Conn.SendPacket(pkt)
}
func (h *HandshakeState) HandlePacket3(pkt *protocol.Packet) error {
if len(pkt.Data) < 233 {
return fmt.Errorf("packet 3 too short")
}
if pkt.Data[0] != 0x03 {
return fmt.Errorf("expected step 3, got %d", pkt.Data[0])
}
h.X = new(big.Int).SetBytes(pkt.Data[1:65])
h.N = new(big.Int).SetBytes(pkt.Data[65:129])
h.Level = binary.BigEndian.Uint32(pkt.Data[129:133])
copy(h.A2[:], pkt.Data[133:233])
h.Step = 3
log.Printf("Received Puzzle: Level=%d", h.Level)
return h.SendPacket4()
}
func (h *HandshakeState) SendPacket4() error {
e := new(big.Int).Lsh(big.NewInt(1), uint(h.Level))
y := new(big.Int).Exp(h.X, e, h.N)
yBytes := y.Bytes()
yPadded := make([]byte, 64)
if len(yBytes) > 64 {
copy(yPadded, yBytes[len(yBytes)-64:])
} else {
copy(yPadded[64-len(yBytes):], yBytes)
}
buf := new(bytes.Buffer)
ts := int32(time.Now().Unix()) - 1356998400
binary.Write(buf, binary.BigEndian, ts)
buf.WriteByte(0x04) // Step 4
xPadded := make([]byte, 64)
xb := h.X.Bytes()
if len(xb) > 64 {
copy(xPadded, xb[len(xb)-64:])
} else {
copy(xPadded[64-len(xb):], xb)
}
buf.Write(xPadded)
nPadded := make([]byte, 64)
nb := h.N.Bytes()
if len(nb) > 64 {
copy(nPadded, nb[len(nb)-64:])
} else {
copy(nPadded[64-len(nb):], nb)
}
buf.Write(nPadded)
binary.Write(buf, binary.BigEndian, h.Level)
buf.Write(h.A2[:])
buf.Write(yPadded)
cmdData := h.GenerateClientInitIV()
buf.Write([]byte(cmdData))
pkt := protocol.NewPacket(protocol.PacketTypeInit1, buf.Bytes())
pkt.Header.PacketID = 103
pkt.Header.MAC = protocol.HandshakeMac
log.Println("Sending Packet 4 with Solution and clientinitiv...")
return h.Conn.SendPacket(pkt)
}
// ProcessInitivexpand2 handles the decrypted command logic
func (h *HandshakeState) ProcessInitivexpand2(cmdArgs map[string]string) error {
if h.Step >= 5 {
log.Println("Ignoring duplicate initivexpand2 (Step already advanced)")
return nil
}
lStr, ok := cmdArgs["l"]
if !ok {
return errors.New("missing license (l)")
}
lData, err := base64.StdEncoding.DecodeString(lStr)
if err != nil {
return err
}
betaStr, ok := cmdArgs["beta"]
if !ok {
return errors.New("missing beta")
}
h.Beta, err = base64.StdEncoding.DecodeString(betaStr)
if err != nil {
return err
}
// 1. Derive Server Public Key (Edwards Y)
serverEdPubBytes, err := protocol.ParseLicenseAndDeriveKey(lData)
if err != nil {
return fmt.Errorf("LICENSE FAIL: %v", err)
}
// Load Server Public Key as Edwards Point
serverPoint, err := new(edwards25519.Point).SetBytes(serverEdPubBytes)
if err != nil {
return fmt.Errorf("invalid server public key point: %v", err)
}
// 2. Client Ephemeral Key (Scalar) is pre-generated in NewHandshakeState (h.ClientScalar)
// Compute Client Public Key (Point) = Scalar * Base
clientPubPoint := new(edwards25519.Point).ScalarBaseMult(h.ClientScalar)
h.ClientEkPub = [32]byte(clientPubPoint.Bytes())
// 3. Calculate Shared Secret (Ed25519 Scalar Mult)
// Negate Server Public Key (TS3/Punisher.NaCl logic)
serverPointNeg := new(edwards25519.Point).Negate(serverPoint)
// Multiply: Result = Scalar * (-ServerPoint)
sharedPoint := new(edwards25519.Point).ScalarMult(h.ClientScalar, serverPointNeg)
sharedBytes := sharedPoint.Bytes()
// XOR the last byte with 0x80 (Flip sign bit of X coordinate)
sharedBytes[31] ^= 0x80
// 4. SHA512 Hash of the result
hash := sha512.Sum512(sharedBytes)
h.SharedSecret = hash[:]
h.SharedIV = make([]byte, 64)
copy(h.SharedIV, h.SharedSecret)
// XOR operations
// SharedIV[0..10] xor alpha
// SharedIV[10..64] xor beta
// Alpha is 10 bytes (h.Alpha)
for i := 0; i < 10; i++ {
h.SharedIV[i] ^= h.Alpha[i]
}
// Beta should be 54 bytes
log.Printf("Debug - Beta Length: %d", len(h.Beta))
if len(h.Beta) >= 54 {
for i := 0; i < 54; i++ {
h.SharedIV[10+i] ^= h.Beta[i]
}
}
// SharedMac = SHA1(SharedIV)[0..8]
macHash := sha1.Sum(h.SharedIV)
copy(h.SharedMac[:], macHash[0:8])
log.Printf("Debug - SharedSecret (SHA512): %s", hex.EncodeToString(h.SharedSecret))
log.Printf("Debug - SharedIV: %s", hex.EncodeToString(h.SharedIV))
log.Printf("Debug - SharedMac: %s", hex.EncodeToString(h.SharedMac[:]))
log.Println("Shared Secret & Keys Calculated using TS3 Ed25519 logic.")
return h.SendClientEk()
}
func (h *HandshakeState) SendClientEk() error {
// clientek ek={ek} proof={proof}
// ek = base64(client_public_key) [Ed25519 Compressed Point]
ekStr := base64.StdEncoding.EncodeToString(h.ClientEkPub[:])
// proof = base64(ecdsa_sign(client_public_key + beta))
// "sign must be done with the private key from the identity keypair." (P-256)
proofBuf := append(h.ClientEkPub[:], h.Beta...)
hash := sha256.Sum256(proofBuf)
r, s, err := ecdsa.Sign(rand.Reader, h.IdentityKey, hash[:])
if err != nil {
return err
}
// Encode Signature (ASN.1 DER)
// Reverting to DER as server uses DER.
sigContent := new(bytes.Buffer)
writeBigInt(sigContent, r)
writeBigInt(sigContent, s)
sigSeq := new(bytes.Buffer)
sigSeq.WriteByte(0x30)
writeLength(sigSeq, sigContent.Len())
sigSeq.Write(sigContent.Bytes())
proofBytes := sigSeq.Bytes()
proofStr := base64.StdEncoding.EncodeToString(proofBytes)
log.Printf("Debug - ClientEk: %s", ekStr)
log.Printf("Debug - Proof (DER): %s", hex.EncodeToString(proofBytes))
// Construct Command
cmd := fmt.Sprintf("clientek ek=%s proof=%s", protocol.Escape(ekStr), protocol.Escape(proofStr))
// Packet 1 (New counter logic? Spec: "clientek already has the packet id 1")
// This is the START of the new encrypted session?
// "The normal packet id counting starts with this packet."
buf := new(bytes.Buffer)
buf.Write([]byte(cmd))
pkt := protocol.NewPacket(protocol.PacketTypeCommand, buf.Bytes())
pkt.Header.PacketID = 1 // Reset to 1
pkt.Header.SetType(protocol.PacketTypeCommand) // Ensure flag (NewProtocol? Unencrypted?)
// Encryption?
// "All Command ... Packets must get encrypted." (Using OLD Handshake keys? Or NEW?)
// "The crypto handshake is now completed. The normal encryption scheme ... is from now on used."
// Usually implies clientek IS encrypted with the NEW keys.
// Add PacketFlagNewProtocol
pkt.Header.Type |= protocol.PacketFlagNewProtocol // 0x20
// Encryption
// Try using HandshakeKey like initivexpand2 instead of SharedSecret
// The crypto switch might happen AFTER clientek is accepted
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
// Prepare Meta for EAX
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
meta[4] = pkt.Header.Type
// Encrypt
cipherDict, mac, err := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
if err != nil {
return err
}
pkt.Data = cipherDict
copy(pkt.Header.MAC[:], mac)
log.Println("Sending clientek (Packet 1) [Encrypted]")
h.Step = 5
return h.Conn.SendPacket(pkt)
}
func (h *HandshakeState) GenerateClientInitIV() string {
// ... (Existing implementation) ...
// Copy from previous step
alphaStr := base64.StdEncoding.EncodeToString(h.Alpha)
omegaStr := h.GenerateOmega()
ip := "127.0.0.1"
if addr, ok := h.Conn.RemoteAddr().(*net.UDPAddr); ok {
ip = addr.IP.String()
} else if h.Conn.RemoteAddr() != nil {
ip = h.Conn.RemoteAddr().String()
if host, _, err := net.SplitHostPort(ip); err == nil {
ip = host
}
}
return fmt.Sprintf("clientinitiv alpha=%s omega=%s ot=1 ip=%s",
protocol.Escape(alphaStr), protocol.Escape(omegaStr), protocol.Escape(ip))
}
func (h *HandshakeState) GenerateOmega() string {
// ... (Existing implementation) ...
pub := h.IdentityKey.PublicKey
content := new(bytes.Buffer)
content.Write([]byte{0x03, 0x02, 0x07, 0x00})
content.Write([]byte{0x02, 0x01, 0x20})
writeBigInt(content, pub.X)
writeBigInt(content, pub.Y)
seq := new(bytes.Buffer)
seq.WriteByte(0x30)
writeLength(seq, content.Len())
seq.Write(content.Bytes())
return base64.StdEncoding.EncodeToString(seq.Bytes())
}
func writeBigInt(buf *bytes.Buffer, n *big.Int) {
b := n.Bytes()
buf.WriteByte(0x02)
padded := b
if len(b) > 0 && b[0] >= 0x80 {
padded = make([]byte, len(b)+1)
padded[0] = 0x00
copy(padded[1:], b)
} else if len(b) == 0 {
padded = []byte{0x00}
}
writeLength(buf, len(padded))
buf.Write(padded)
}
func writeLength(buf *bytes.Buffer, length int) {
if length < 128 {
buf.WriteByte(byte(length))
} else {
s := fmt.Sprintf("%x", length)
if len(s)%2 != 0 {
s = "0" + s
}
b, _ := hex.DecodeString(s)
buf.WriteByte(0x80 | byte(len(b)))
buf.Write(b)
}
}
// ImproveSecurityLevel mines a counter to achieve the target security level.
func (h *HandshakeState) ImproveSecurityLevel(targetLevel int) {
omega := h.GenerateOmega() // Base64 of ASN.1 Public Key
// Start from current offset (usually 0)
counter := h.IdentityOffset
fmt.Printf("Mining Identity Level %d... ", targetLevel)
for {
// Construct data: Omega + Counter (ASCII)
data := fmt.Sprintf("%s%d", omega, counter)
// SHA1
hash := sha1.Sum([]byte(data))
// Count leading zero bits
zeros := countLeadingZeros(hash[:])
if zeros >= targetLevel {
h.IdentityLevel = zeros
h.IdentityOffset = counter
fmt.Printf("Found! Offset=%d, Level=%d\n", counter, zeros)
return
}
counter++
if counter%100000 == 0 {
// fmt.Print(".")
}
}
}
func countLeadingZeros(hash []byte) int {
zeros := 0
for _, b := range hash {
if b == 0 {
zeros += 8
} else {
// Count bits in this byte
for i := 7; i >= 0; i-- {
if (b>>i)&1 == 0 {
zeros++
} else {
return zeros
}
}
return zeros
}
}
return zeros
}

59
pkg/protocol/commands.go Normal file
View File

@@ -0,0 +1,59 @@
package protocol
import (
"strings"
)
// Command Parsing Helpers
func ParseCommand(data []byte) (string, map[string]string) {
s := string(data)
parts := strings.Split(s, " ")
cmd := parts[0]
args := make(map[string]string)
for _, p := range parts[1:] {
kv := strings.SplitN(p, "=", 2)
if len(kv) == 2 {
val := Unescape(kv[1])
args[kv[0]] = val
} else {
args[p] = ""
}
}
return cmd, args
}
// Unescape TS3 string
func Unescape(s string) string {
r := strings.NewReplacer(
`\/`, `/`,
`\s`, ` `,
`\p`, `|`,
`\a`, "\a",
`\b`, "\b",
`\f`, "\f",
`\n`, "\n",
`\r`, "\r",
`\t`, "\t",
`\v`, "\v",
`\\`, `\`,
)
return r.Replace(s)
}
func Escape(s string) string {
r := strings.NewReplacer(
`\`, `\\`,
`/`, `\/`,
` `, `\s`,
`|`, `\p`,
"\a", `\a`,
"\b", `\b`,
"\f", `\f`,
"\n", `\n`,
"\r", `\r`,
"\t", `\t`,
"\v", `\v`,
)
return r.Replace(s)
}

182
pkg/protocol/crypto.go Normal file
View File

@@ -0,0 +1,182 @@
package protocol
import (
"crypto/aes"
"crypto/cipher"
"crypto/sha1"
"crypto/sha256"
"encoding/base64"
"encoding/binary"
"fmt"
)
// Crypto Globals for Handshake (as per spec)
var (
HandshakeMac = [8]byte{0x54, 0x53, 0x33, 0x49, 0x4E, 0x49, 0x54, 0x31} // "TS3INIT1"
HandshakeKey = []byte{0x63, 0x3A, 0x5C, 0x77, 0x69, 0x6E, 0x64, 0x6F, 0x77, 0x73, 0x5C, 0x73, 0x79, 0x73, 0x74, 0x65} // "c:\windows\syste"
HandshakeNonce = []byte{0x6D, 0x5C, 0x66, 0x69, 0x72, 0x65, 0x77, 0x61, 0x6C, 0x6C, 0x33, 0x32, 0x2E, 0x63, 0x70, 0x6C} // "m\firewall32.cpl"
)
// EAX Mode Implementation (AES-CTR + OMAC) -> For simplicity we will use a simplified approach or find a library if possible.
// Since Go doesn't have EAX in standard lib, and we want to avoid complex dependencies if possible for this snippet,
// we'll implement the key generation logic. The EAX encryption usually wraps AES-CTR.
// Important: For a production client, use a verified crypto library.
type CryptoState struct {
SharedIV []byte
SharedMac []byte
GenerationID uint32
}
// GenerateKeyNonce generates the Key and Nonce for EAX encryption/decryption as per section 1.6.2
func (s *CryptoState) GenerateKeyNonce(header *PacketHeader, isClientToServer bool) ([]byte, []byte) {
// 1. Temporary buffer
// length depends on protocol version/logic.
// Spec: "The old protocol SharedIV ... will be 20 bytes long ... new protocol SharedIV ... will have 64 bytes"
// GenerationID starts at 0.
var temp []byte
sivLen := len(s.SharedIV)
if sivLen == 20 {
temp = make([]byte, 26)
} else {
// Spec 1.6.2 New Protocol: 1 (type) + 1 (pt) + 4 (pgid) + 64 (sharedIV) = 70 bytes.
temp = make([]byte, 70)
}
// temp[0] 'c'/'s' logic:
// Spec: "0x30 for Client, 0x31 for Server... Wait.
// "Used for Client -> Server: 0x31"
// "Used for Server -> Client: 0x30"
if isClientToServer {
temp[0] = 0x31
} else { // Client <- Server
temp[0] = 0x30
}
// temp[1] = PT (Base Type only, no flags!)
// ts3j uses getType().getIndex() which is the enum value.
temp[1] = header.Type & 0x0F
// temp[2..6] = PGId (Network Order)
binary.BigEndian.PutUint32(temp[2:6], s.GenerationID)
// Copy SharedIV
// if SIV.length == 20 -> temp[6..26] = SIV[0..20]
// if SIV.length == 64 -> temp[6..70] = SIV[0..64]
copy(temp[6:], s.SharedIV)
// keynonce = sha256(temp)
hash := sha256.Sum256(temp)
key := make([]byte, 16)
nonce := make([]byte, 16)
copy(key, hash[0:16])
copy(nonce, hash[16:32])
// XOR Key with PID
// key[0] = key[0] xor ((PId & 0xFF00) >> 8)
// key[1] = key[1] xor ((PId & 0x00FF) >> 0)
key[0] ^= byte((header.PacketID & 0xFF00) >> 8)
key[1] ^= byte((header.PacketID & 0x00FF))
return key, nonce
}
// Base64 Helpers for TS3
func Base64Encode(data []byte) string {
return base64.StdEncoding.EncodeToString(data)
}
func Base64Decode(s string) ([]byte, error) {
return base64.StdEncoding.DecodeString(s)
}
// SHA1 Helper
func Sha1(data []byte) []byte {
h := sha1.New()
h.Write(data)
return h.Sum(nil)
}
// GenerateHashCash implements the puzzle solver (Section 4.1)
// Finds the level of a public key + offset
func GetHashCashLevel(key []byte, offset uint64) int {
// data = sha1(publicKey + keyOffset)
// Note: Reference implementation concatenates the string representation of offset?
// Spec says: "The key offset is a u64 number, which gets converted to a string when concatenated."
offsetStr := fmt.Sprintf("%d", offset)
buf := append(key, []byte(offsetStr)...)
hash := Sha1(buf)
// Count leading zero bits
level := 0
for _, b := range hash {
if b == 0 {
level += 8
} else {
// Count bits in this byte
for i := 7; i >= 0; i-- {
if (b & (1 << i)) == 0 {
level++
} else {
return level
}
}
break
}
}
return level
}
// Fake encryption for now to proceed until EAX is fully implemented or needed
// The spec requires EAX for commands.
func EncryptPacket(pkt *Packet, key, nonce []byte) error {
// Placeholder: In a real implementation, we would use an EAX implementation here.
// For the initial handshake (Init1 packets), encryption is often disabled or simplified (XOR).
// Reviewing: Init1 packets are NOT encrypted (FlagUnencrypted set).
// Command packets ARE encrypted.
block, err := aes.NewCipher(key)
if err != nil {
return err
}
// Standard CTR implementation (part of EAX)
// EAX components: CTR for encryption, OMAC for authentication (MAC)
// We strictly need the MAC for the packet header.
// For minimal functional requirement "Connect", we might need full EAX if the server enforces it on the first Command.
// For now we will implement standard CTR for the data payload.
// The MAC calculation is complex and requires OMAC1.
stream := cipher.NewCTR(block, nonce)
stream.XORKeyStream(pkt.Data, pkt.Data)
return nil
}
func DecryptPacket(pkt *Packet, key, nonce []byte) error {
block, err := aes.NewCipher(key)
if err != nil {
return err
}
stream := cipher.NewCTR(block, nonce)
stream.XORKeyStream(pkt.Data, pkt.Data)
return nil
}
// Curve25519 Helper
func GenerateECDHKeypair() (public, private [32]byte, err error) {
// Generate private key (use real random in prod)
// For reproduction/dev we might use fixed.
// Actually we need `crypto/rand`
// private = rand(32)
// curve25519.ScalarBaseMult(&public, &private)
return
}

View File

@@ -0,0 +1,101 @@
package protocol
import (
"crypto/sha1"
"crypto/sha512"
"encoding/hex"
"strings"
"testing"
"filippo.io/edwards25519"
)
// Helper to match ts3j hex string decoding
func hexBytes(s string) []byte {
b, _ := hex.DecodeString(s)
return b
}
func TestCryptoInit2_Ts3jVectors(t *testing.T) {
// Vectors from ts3j CryptoInit2Test.java
licenseBytes := hexBytes("0100358541498A24ACD30157918B8F50955C0DAE970AB65372CBE407" +
"415FCF3E029B02084D15E00AA793600700000020416E6F6E796D6F7573000047D9E4DC25AA2E90ACD4DB5FA61C8F" +
"ED369B346D84C2CA2FCCCA86F73AFEF092200A77C8810A787141")
alpha := hexBytes("9500A5DB3B50ACECAB81")
beta := hexBytes("EAFFC9A8BC996B25C8AA700264E99E372ECCDEB1C121D6EC0F4D49FB46" +
"CEEBA4E3C724B3070FD70CB03D7BC08129205690ECE228CA7C")
privateKeyBytes := hexBytes("102E591ABA4508129E812FF3437E2DDD3CA1F1EC341117CA35" +
"14CC347A7C2A77")
expectedIvStructHex := "E4082A92F71C96A947452F5582EF2879B2051ED2D3" +
"F2C6B0643CF5A266EE6B5180573C2F5F3F1C4AC579188366F16AE0EADC3AAF860805D8F2A831E9E49F4513"
expectedFakeSigHex := "54F2B4D661E0F9AB"
// 1. Derive Server Public Key (License)
serverPubBytes, err := ParseLicenseAndDeriveKey(licenseBytes)
if err != nil {
t.Fatalf("ParseLicenseAndDeriveKey failed: %v", err)
}
// 2. Derive Shared Secret (simulating ts3j generateSharedSecret2)
// Load Server Point
serverPoint, err := new(edwards25519.Point).SetBytes(serverPubBytes)
if err != nil {
t.Fatalf("Invalid server pub key derived: %v", err)
}
// Negate Server Point
serverPoint.Negate(serverPoint)
// Create Scalar from private key
scalarBytes := make([]byte, 32)
copy(scalarBytes, privateKeyBytes)
scalarBytes[31] &= 0x7F // ts3j specific masking
// Load Scalar
scalar, err := new(edwards25519.Scalar).SetBytesWithClamping(scalarBytes)
if err != nil {
t.Fatalf("Scalar load failed: %v", err)
}
// Multiply
sharedPoint := new(edwards25519.Point).ScalarMult(scalar, serverPoint)
sharedBytes := sharedPoint.Bytes()
// Flip Sign
sharedBytes[31] ^= 0x80
// Hash
sharedSecret := sha512.Sum512(sharedBytes)
// 3. Calculate IV/Mac
// IV = XOR(SharedSecret, Alpha) ++ XOR(SharedSecret, Beta)
ivStruct := make([]byte, 64)
copy(ivStruct, sharedSecret[:])
for i := 0; i < 10; i++ {
ivStruct[i] ^= alpha[i]
}
if len(beta) < 54 {
t.Fatal("Beta too short")
}
for i := 0; i < 54; i++ {
ivStruct[10+i] ^= beta[i]
}
// FakeSig = SHA1(IV)[0..8]
macHash := sha1.Sum(ivStruct)
fakeSig := macHash[0:8]
// Compare
gotIvHex := hex.EncodeToString(ivStruct)
if !strings.EqualFold(gotIvHex, expectedIvStructHex) {
t.Errorf("IV Struct Mismatch.\nGot: %s\nWant: %s", gotIvHex, expectedIvStructHex)
}
gotSigHex := hex.EncodeToString(fakeSig)
if !strings.EqualFold(gotSigHex, expectedFakeSigHex) {
t.Errorf("FakeSig Mismatch.\nGot: %s\nWant: %s", gotSigHex, expectedFakeSigHex)
}
}

View File

@@ -0,0 +1,56 @@
package protocol
import (
"encoding/base64"
"reflect"
"testing"
)
func TestGenerateKeyNonce(t *testing.T) {
// Vectors from ts3j EncryptionTest.java
ivStructBase64 := "/rn6nR71hV8eFl+15WO68fRU8pOCBw3t0FmcG5c7WNxIkeZ1NtaWTVMBde0cdU5tTKwOl8sE6gpHjnCEF4hhDw=="
expectedKeyBase64 := "BF+lO776+e45u+qYAOHihg=="
expectedNonceBase64 := "1IVcTMuizpDHjQgn2yGCgg=="
ivStruct, _ := base64.StdEncoding.DecodeString(ivStructBase64)
expectedKey, _ := base64.StdEncoding.DecodeString(expectedKeyBase64)
expectedNonce, _ := base64.StdEncoding.DecodeString(expectedNonceBase64)
// CryptoState setup
crypto := &CryptoState{
SharedIV: ivStruct,
GenerationID: 0,
}
// Packet Header setup
// Packet ID = 1
// Type = COMMAND (2)
// Flags = NEW_PROTOCOL (0x20)
// Type in Header struct contains (Type | Flags)
// byte(2) | byte(0x20) = 0x22
header := &PacketHeader{
PacketID: 1,
Type: uint8(PacketTypeCommand) | PacketFlagNewProtocol,
}
// Note: PacketTypeCommand is 0x02. PacketFlagNewProtocol is 0x20.
// Header.Type is uint8.
// Generate (Client -> Server = true)
// ts3j test uses ProtocolRole.CLIENT which maps to 0x31 for temporaryByteBuffer?
// PacketTransformation.java: (header.getRole() == ProtocolRole.SERVER ? 0x30 : 0x31)
// If EncryptionTest creates Packet(ProtocolRole.CLIENT), then header role is CLIENT.
// So byte is 0x31.
// In my crypto.go, GenerateKeyNonce(..., isClientToServer bool).
// If client sends, isClientToServer should be true. (maps to 0x31).
key, nonce := crypto.GenerateKeyNonce(header, true)
if !reflect.DeepEqual(key, expectedKey) {
t.Errorf("Key mismatch.\nGot: %x\nWant: %x", key, expectedKey)
}
if !reflect.DeepEqual(nonce, expectedNonce) {
t.Errorf("Nonce mismatch.\nGot: %x\nWant: %x", nonce, expectedNonce)
}
}

178
pkg/protocol/eax.go Normal file
View File

@@ -0,0 +1,178 @@
package protocol
import (
"crypto/aes"
"crypto/cipher"
"errors"
)
// OMAC1 (CMAC) Implementation for AES-128
// RFC 4493
func shiftLeft(in []byte, out []byte) {
var carry byte
for i := 15; i >= 0; i-- {
b := in[i]
out[i] = (b << 1) | carry
carry = (b >> 7) & 1
}
}
func xorBlock(a, b []byte) {
for i := 0; i < 16; i++ {
a[i] ^= b[i]
}
}
func generateSubkeys(cipherBlock cipher.Block) (k1, k2 []byte) {
l := make([]byte, 16)
cipherBlock.Encrypt(l, make([]byte, 16))
k1 = make([]byte, 16)
shiftLeft(l, k1)
if l[0]&0x80 != 0 {
k1[15] ^= 0x87
}
k2 = make([]byte, 16)
shiftLeft(k1, k2)
if k1[0]&0x80 != 0 {
k2[15] ^= 0x87
}
return
}
func omac1(cipherBlock cipher.Block, data []byte) []byte {
k1, k2 := generateSubkeys(cipherBlock)
n := len(data)
numBlocks := (n + 15) / 16
if numBlocks == 0 {
numBlocks = 1
}
lastBlock := make([]byte, 16)
flagComplete := (n > 0 && n%16 == 0)
if flagComplete {
copy(lastBlock, data[n-16:])
xorBlock(lastBlock, k1)
} else {
remaining := n % 16
copy(lastBlock, data[n-remaining:])
lastBlock[remaining] = 0x80 // padding
xorBlock(lastBlock, k2)
}
x := make([]byte, 16)
y := make([]byte, 16)
for i := 0; i < numBlocks-1; i++ {
copy(y, data[i*16:(i+1)*16])
xorBlock(y, x)
cipherBlock.Encrypt(x, y)
}
xorBlock(x, lastBlock)
cipherBlock.Encrypt(x, x)
return x
}
// EAX implementation functions
// omacWithTag computes OMAC(t || m)
func omacWithTag(block cipher.Block, tag byte, m []byte) []byte {
// EAX uses [t] as prefix for OMAC
// but standard OMAC implies it's just the message.
// EAX spec: OMAC^t_K(M) = OMAC_K ([t]_n || M)
// where n is block size (16).
// We construct a new slice with the prefix
buf := make([]byte, 16+len(m))
buf[15] = tag // The last byte of the first block is the tag?
// Wait, EAX spec: [t]_n is the byte t padded with zeros to block size n.
// Usually it implies the last byte is t, or first?
// "Let [t]_n denote the n-byte string that consists of n-1 zero bytes followed by the byte t."
// So for n=16, 15 zeros then t.
copy(buf[16:], m)
return omac1(block, buf)
}
// EncryptEAX performs EAX encryption and returns ciphertext + mac
// Key and Nonce must be valid for AES-128 (16 bytes).
func EncryptEAX(key, nonce, header, data []byte) (ciphertext []byte, mac []byte, err error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
// 1. Calculate Nonce MAC (N)
// N = OMAC^0_K(Nonce)
nMac := omacWithTag(block, 0, nonce)
// 2. Calculate Header MAC (H)
// H = OMAC^1_K(Header)
hMac := omacWithTag(block, 1, header)
// 3. Encrypt Data (C)
// CTR using N as counter/IV
ciphertext = make([]byte, len(data))
ctrStream := cipher.NewCTR(block, nMac)
ctrStream.XORKeyStream(ciphertext, data)
// 4. Calculate Ciphertext MAC (C_MAC)
// C_MAC = OMAC^2_K(Ciphertext)
cMac := omacWithTag(block, 2, ciphertext)
// 5. Final Tag = N ^ H ^ C_MAC
tag := make([]byte, 16)
for i := 0; i < 16; i++ {
tag[i] = nMac[i] ^ hMac[i] ^ cMac[i]
}
// TS3 uses 8 bytes of the MAC
return ciphertext, tag[:8], nil
}
// DecryptEAX verifies and decrypts
func DecryptEAX(key, nonce, header, data, expectedMac []byte) (plaintext []byte, err error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
// 1. N = OMAC^0_K(Nonce)
nMac := omacWithTag(block, 0, nonce)
// 2. H = OMAC^1_K(Header)
hMac := omacWithTag(block, 1, header)
// 3. C_MAC = OMAC^2_K(Data is Ciphertext here)
cMac := omacWithTag(block, 2, data)
// 4. Calculate Tag
tag := make([]byte, 16)
for i := 0; i < 16; i++ {
tag[i] = nMac[i] ^ hMac[i] ^ cMac[i]
}
// Verify MAC
if len(expectedMac) > 16 {
return nil, errors.New("expected MAC too long")
}
// Constant time compare needed ideally
for i := 0; i < len(expectedMac); i++ {
if tag[i] != expectedMac[i] {
return nil, errors.New("mac verification failed")
}
}
// 5. Decrypt
plaintext = make([]byte, len(data))
ctrStream := cipher.NewCTR(block, nMac)
ctrStream.XORKeyStream(plaintext, data)
return plaintext, nil
}

53
pkg/protocol/eax_test.go Normal file
View File

@@ -0,0 +1,53 @@
package protocol
import (
"crypto/aes"
"encoding/hex"
"reflect"
"testing"
)
func TestOMAC1_RFC4493(t *testing.T) {
// RFC 4493 Test Vectors for AES-128-CMAC
keyHex := "2b7e151628aed2a6abf7158809cf4f3c"
key, _ := hex.DecodeString(keyHex)
block, err := aes.NewCipher(key)
if err != nil {
t.Fatal(err)
}
// Example 1: Empty Message
msg1 := []byte{}
want1Hex := "bb1d6929e95937287fa37d129b756746"
want1, _ := hex.DecodeString(want1Hex)
got1 := omac1(block, msg1)
if !reflect.DeepEqual(got1, want1) {
t.Errorf("OMAC1 Empty Message Mismatch.\nGot: %x\nWant: %x", got1, want1)
}
// Example 2: 16 bytes
msg2Hex := "6bc1bee22e409f96e93d7e117393172a"
msg2, _ := hex.DecodeString(msg2Hex)
want2Hex := "070a16b46b4d4144f79bdd9dd04a287c"
want2, _ := hex.DecodeString(want2Hex)
got2 := omac1(block, msg2)
if !reflect.DeepEqual(got2, want2) {
t.Errorf("OMAC1 16-byte Message Mismatch.\nGot: %x\nWant: %x", got2, want2)
}
// Example 3: 40 bytes (not multiple of 16)
msg3Hex := "6bc1bee22e409f96e93d7e117393172a" +
"ae2d8a571e03ac9c9eb76fac45af8e51" +
"30c81c46a35ce411"
msg3, _ := hex.DecodeString(msg3Hex)
want3Hex := "dfa66747de9ae63030ca32611497c827"
want3, _ := hex.DecodeString(want3Hex)
got3 := omac1(block, msg3)
if !reflect.DeepEqual(got3, want3) {
t.Errorf("OMAC1 40-byte Message Mismatch.\nGot: %x\nWant: %x", got3, want3)
}
}

39
pkg/protocol/enums.go Normal file
View File

@@ -0,0 +1,39 @@
package protocol
// Codec types
const (
CodecSpeexNarrowband = 0
CodecSpeexWideband = 1
CodecSpeexUltrawideband = 2
CodecCeltMono = 3
CodecOpusVoice = 4
CodecOpusMusic = 5
)
// Reason types for events
type ReasonID int
const (
ReasonNone ReasonID = 0
ReasonMoved ReasonID = 1
ReasonSubscription ReasonID = 2
ReasonLostConnection ReasonID = 3
ReasonKickChannel ReasonID = 4
ReasonKickServer ReasonID = 5
ReasonKickServerBan ReasonID = 6
ReasonServerStop ReasonID = 7
ReasonClientDisconnect ReasonID = 8
ReasonChannelUpdate ReasonID = 9
ReasonChannelEdit ReasonID = 10
ReasonClientDisconnectServerShutdown ReasonID = 11
)
// TextMessageTargetMode identifies who receives the message
type TextMessageTargetMode int
const (
TextMessageTarget_Unknown TextMessageTargetMode = 0
TextMessageTarget_Client TextMessageTargetMode = 1
TextMessageTarget_Channel TextMessageTargetMode = 2
TextMessageTarget_Server TextMessageTargetMode = 3
)

152
pkg/protocol/license.go Normal file
View File

@@ -0,0 +1,152 @@
package protocol
import (
"bytes"
"crypto/sha512"
"errors"
"fmt"
"filippo.io/edwards25519"
)
// Root Key (compressed Edwards25519 point)
var LicenseRootKeyBytes = [32]byte{
0xcd, 0x0d, 0xe2, 0xae, 0xd4, 0x63, 0x45, 0x50, 0x9a, 0x7e, 0x3c,
0xfd, 0x8f, 0x68, 0xb3, 0xdc, 0x75, 0x55, 0xb2, 0x9d, 0xcc, 0xec,
0x73, 0xcd, 0x18, 0x75, 0x0f, 0x99, 0x38, 0x12, 0x40, 0x8a,
}
// ParseLicense and derive final Public Key
func ParseLicenseAndDeriveKey(licenseData []byte) ([]byte, error) {
// Header
if len(licenseData) < 1 || licenseData[0] != 0x01 {
return nil, errors.New("invalid license version")
}
reader := bytes.NewReader(licenseData[1:])
// Initialize current key with Root
currentPoint, err := new(edwards25519.Point).SetBytes(LicenseRootKeyBytes[:])
if err != nil {
return nil, fmt.Errorf("failed to load root key: %v", err)
}
// Iterate blocks
for reader.Len() > 0 {
// Calculate Start Position
bytesConsumed := (len(licenseData) - 1) - reader.Len()
blockStartAbs := 1 + bytesConsumed
// Read KeyType
_, err = reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("read keyType failed: %v", err)
}
// Read Public Key
var pubKeyBytes [32]byte
if _, err := reader.Read(pubKeyBytes[:]); err != nil {
return nil, fmt.Errorf("read pubKey failed: %v", err)
}
blockPubKey, err := new(edwards25519.Point).SetBytes(pubKeyBytes[:])
if err != nil {
return nil, fmt.Errorf("invalid block public key: %v", err)
}
// Read Block Type
blockType, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("read blockType failed: %v", err)
}
// Read Dates
dates := make([]byte, 8)
if _, err := reader.Read(dates); err != nil {
return nil, fmt.Errorf("read dates failed: %v", err)
}
// Parse Content
switch blockType {
case 0x00: // Intermediate
// 4 bytes int
tmp := make([]byte, 4)
if _, err := reader.Read(tmp); err != nil {
return nil, fmt.Errorf("read intermediate int failed: %v", err)
}
// String
if _, err := readNullTerminatedString(reader); err != nil {
return nil, fmt.Errorf("read intermediate string failed: %v", err)
}
case 0x01, 0x03: // Website / Code
if _, err := readNullTerminatedString(reader); err != nil {
return nil, err
}
case 0x02: // Server
// 5 bytes
tmp := make([]byte, 5)
if _, err := reader.Read(tmp); err != nil {
return nil, fmt.Errorf("read server data failed: %v", err)
}
if _, err := readNullTerminatedString(reader); err != nil {
return nil, fmt.Errorf("read server string failed: %v", err)
}
case 0x20: // Box
// Ephemeral blocks might be empty content
if reader.Len() > 0 {
if _, err := readNullTerminatedString(reader); err != nil {
return nil, err
}
}
default:
// Fallback
}
// Calculate End for Hashing
bytesConsumedAfter := (len(licenseData) - 1) - reader.Len()
blockEndAbs := 1 + bytesConsumedAfter
hashStart := blockStartAbs + 1
if blockEndAbs <= hashStart {
return nil, errors.New("block too short for hashing")
}
hashableData := licenseData[hashStart:blockEndAbs]
// Calculate SHA512 Hash
hash := sha512.Sum512(hashableData)
var scalarBytes [32]byte
copy(scalarBytes[:], hash[:32]) // Take first 32 bytes
// Clamp the hash
scalarBytes[0] &= 248
scalarBytes[31] &= 127
scalarBytes[31] |= 64
scalar, err := new(edwards25519.Scalar).SetBytesWithClamping(scalarBytes[:])
if err != nil {
return nil, fmt.Errorf("scalar creation failed: %v", err)
}
// Derive: current = current + (blockKey * hash)
term := new(edwards25519.Point).ScalarMult(scalar, blockPubKey)
currentPoint.Add(currentPoint, term)
}
return currentPoint.Bytes(), nil
}
func readNullTerminatedString(r *bytes.Reader) (string, error) {
var data []byte
for {
b, err := r.ReadByte()
if err != nil {
return "", err
}
if b == 0x00 {
break
}
data = append(data, b)
}
return string(data), nil
}

View File

@@ -0,0 +1,56 @@
package protocol
import (
"encoding/base64"
"testing"
)
func TestLicenseDerivation_Ts3jVectors(t *testing.T) {
// Vectors from ts3j LicenseDerivationTest.java
tests := []struct {
name string
license string
expected string
}{
{
name: "Vector 1",
license: "AQA1hUFJiiSs0wFXkYuPUJVcDa6XCrZTcsvkB0Ffzz4CmwIITRXgCqeTYA" +
"cAAAAgQW5vbnltb3VzAADSN9wlGHZEHZvX7ImHoqYezibj5byDh0f4oMsG3afDxyAKePI" +
"VCnma1Q==",
expected: "z/bYm6TmHmuAil/osx8eGi6Oits2vIO4i6Bm13RuiGg=",
},
{
name: "Vector 2",
license: "AQA1hUFJiiSs0wFXkYuPUJVcDa6XCrZTcsvkB0Ffzz4C" +
"mwIITRXgCqeTYAcAAAAgQW5vbnltb3VzAABx1YQfzCiB8b" +
"ZZAdGwXNTLmdhiOpjaH3OOlISy5vrM3iAKePBVCnmZFQ==",
expected: "lrukIi392D7ltdKFp5mURT3Ydk+oWYNjMt3kptbQl6I=",
},
{
name: "Vector 3",
license: "AQA1hUFJiiSs0wFXkYuPUJVcDa6XCrZTcsvkB0Ffzz4CmwIITR" +
"XgCqeTYAcAAAAgQW5vbnltb3VzAAAK5C0l+xtOTAZGEA/GHHOySAUEBmq7fN5" +
"PG7uSGPEADiAKePGHCnmaRw==",
expected: "H+UcEreBUkCWN18nTYZp0QQkQqGA8IqzqvJ5qB225Z8=",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
licenseData, err := base64.StdEncoding.DecodeString(tt.license)
if err != nil {
t.Fatalf("Failed to decode license base64: %v", err)
}
derivedKey, err := ParseLicenseAndDeriveKey(licenseData)
if err != nil {
t.Fatalf("ParseLicenseAndDeriveKey failed: %v", err)
}
derivedKeyBase64 := base64.StdEncoding.EncodeToString(derivedKey)
if derivedKeyBase64 != tt.expected {
t.Errorf("Mismatch.\nGot: %s\nWant: %s", derivedKeyBase64, tt.expected)
}
})
}
}

97
pkg/protocol/math.go Normal file
View File

@@ -0,0 +1,97 @@
package protocol
import (
"crypto/sha1"
"crypto/sha512"
"math/big"
)
// Curve25519 Prime: 2^255 - 19
var P *big.Int
func init() {
P, _ = new(big.Int).SetString("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", 16)
}
// Ed25519 Y (Compressed) to Curve25519 (Montgomery) U
// u = (1 + y) / (1 - y)
func EdwardsToMontgomery(yBytes []byte) ([]byte, error) {
// 1. Decode y (little endian, clamped?)
// "The 32-byte public key is the 32-byte little-endian encoding of the Point."
// High bit is sign of x (ignored for U-coord conv usually?).
// Reverse bytes to big.Int
y := new(big.Int).SetBytes(Reverse(yBytes))
// Clear high bit?
// Ed25519 compressed form: high bit of last byte is X sign.
// y &= ~(1 << 255)
bit255 := big.NewInt(1)
bit255.Lsh(bit255, 255)
if y.Cmp(bit255) >= 0 {
y.Sub(y, bit255)
}
one := big.NewInt(1)
// num = 1 + y
num := new(big.Int).Add(one, y)
num.Mod(num, P)
// den = 1 - y
den := new(big.Int).Sub(one, y)
// Handle negative result for modular arithmetic
if den.Sign() < 0 {
den.Add(den, P)
}
den.Mod(den, P)
// denInv
denInv := new(big.Int).ModInverse(den, P)
// u = num * denInv
u := new(big.Int).Mul(num, denInv)
u.Mod(u, P)
// Encode u (32 bytes little endian)
uBytes := u.Bytes()
uBytesRev := Reverse(uBytes)
// Pad to 32
res := make([]byte, 32)
copy(res, uBytesRev) // Copy into start (little endian usually means LSB at 0?)
// Wait. BigInt Bytes() returns Big Endian.
// Reverse(BigEndian) -> Little Endian.
// If uBytes is shorter than 32, we need to pad ZEROS at the END (high bytes) in Little Endian.
// e.g. Value 1. BigEndian: [1]. Reverse: [1].
// Result [1, 0, 0, ...]
return res, nil
}
func Reverse(b []byte) []byte {
l := len(b)
r := make([]byte, l)
for i := 0; i < l; i++ {
r[i] = b[l-1-i]
}
return r
}
// CalculateSharedSecret inputs:
// serverPubKey (Montgomery U, 32 bytes)
// clientPrivKey (Scalar, 32 bytes)
func CalculateSharedSecret(serverPub, clientPriv []byte) []byte {
// Use x/crypto/curve25519
// ScalarMult(dst, scalar, point)
// Placeholder as logic is in handshake.go currently
return nil
}
// Helper to expand hashes
func Sha1Array(data []byte) [20]byte {
return sha1.Sum(data)
}
func Sha512Array(data []byte) [64]byte {
return sha512.Sum512(data)
}

147
pkg/protocol/packet.go Normal file
View File

@@ -0,0 +1,147 @@
package protocol
import (
"bytes"
"encoding/binary"
"errors"
)
// PacketType represents the type of a TeamSpeak 3 packet.
type PacketType uint8
const (
PacketTypeVoice PacketType = 0x00
PacketTypeVoiceWhisper PacketType = 0x01
PacketTypeCommand PacketType = 0x02
PacketTypeCommandLow PacketType = 0x03
PacketTypePing PacketType = 0x04
PacketTypePong PacketType = 0x05
PacketTypeAck PacketType = 0x06
PacketTypeAckLow PacketType = 0x07
PacketTypeInit1 PacketType = 0x08
)
// Packet Flags
const (
PacketFlagUnencrypted = 0x80
PacketFlagCompressed = 0x40
PacketFlagNewProtocol = 0x20
PacketFlagFragmented = 0x10
)
const (
HeaderSizeClientToServer = 13 // 8 MAC + 2 PID + 2 CID + 1 PT
HeaderSizeServerToClient = 11 // 8 MAC + 2 PID + 1 PT
MACSize = 8
)
// PacketHeader represents the common header fields.
type PacketHeader struct {
MAC [8]byte
PacketID uint16
ClientID uint16 // Only present in Client -> Server
Type uint8 // Contains PacketType and Flags
}
// Packet represents a parsed TeamSpeak 3 packet.
type Packet struct {
Header PacketHeader
Data []byte
}
func (h *PacketHeader) FlagUnencrypted() bool { return h.Type&PacketFlagUnencrypted != 0 }
func (h *PacketHeader) FlagCompressed() bool { return h.Type&PacketFlagCompressed != 0 }
func (h *PacketHeader) FlagNewProtocol() bool { return h.Type&PacketFlagNewProtocol != 0 }
func (h *PacketHeader) FlagFragmented() bool { return h.Type&PacketFlagFragmented != 0 }
func (h *PacketHeader) PacketType() PacketType { return PacketType(h.Type & 0x0F) }
// SetType sets the packet type and preserves flags
func (h *PacketHeader) SetType(pt PacketType) {
flags := h.Type & 0xF0
h.Type = flags | uint8(pt&0x0F)
}
// Encode writes the packet to a byte slice.
func (p *Packet) Encode(isClientToServer bool) ([]byte, error) {
buf := new(bytes.Buffer)
// MAC
buf.Write(p.Header.MAC[:])
// Packet ID
if err := binary.Write(buf, binary.BigEndian, p.Header.PacketID); err != nil {
return nil, err
}
// Client ID (only C->S)
if isClientToServer {
if err := binary.Write(buf, binary.BigEndian, p.Header.ClientID); err != nil {
return nil, err
}
}
// Packet Type
if err := binary.Write(buf, binary.BigEndian, p.Header.Type); err != nil {
return nil, err
}
// Data
buf.Write(p.Data)
return buf.Bytes(), nil
}
// Decode parses a packet from a byte slice.
func Decode(data []byte, isClientToServer bool) (*Packet, error) {
reader := bytes.NewReader(data)
p := &Packet{}
// Check minimum size
minSize := HeaderSizeServerToClient
if isClientToServer {
minSize = HeaderSizeClientToServer
}
if len(data) < minSize {
return nil, errors.New("packet too short")
}
// MAC
if _, err := reader.Read(p.Header.MAC[:]); err != nil {
return nil, err
}
// Packet ID
if err := binary.Read(reader, binary.BigEndian, &p.Header.PacketID); err != nil {
return nil, err
}
// Client ID (only C->S)
if isClientToServer {
if err := binary.Read(reader, binary.BigEndian, &p.Header.ClientID); err != nil {
return nil, err
}
}
// Packet Type
if err := binary.Read(reader, binary.BigEndian, &p.Header.Type); err != nil {
return nil, err
}
// Data
p.Data = make([]byte, reader.Len())
if _, err := reader.Read(p.Data); err != nil {
return nil, err
}
return p, nil
}
func NewPacket(pt PacketType, data []byte) *Packet {
return &Packet{
Header: PacketHeader{
Type: uint8(pt),
MAC: [8]byte{}, // Default empty MAC
},
Data: data,
}
}

118
pkg/transport/socket.go Normal file
View File

@@ -0,0 +1,118 @@
package transport
import (
"fmt"
"net"
"sync"
"time"
"go-ts/pkg/protocol"
)
// TS3Conn handles the UDP connection to the TeamSpeak server.
type TS3Conn struct {
conn *net.UDPConn
readQueue chan *protocol.Packet
closeChan chan struct{}
wg sync.WaitGroup
writeMu sync.Mutex
}
// NewTS3Conn creates a new connection to the specified address.
func NewTS3Conn(address string) (*TS3Conn, error) {
raddr, err := net.ResolveUDPAddr("udp", address)
if err != nil {
return nil, fmt.Errorf("failed to resolve address: %w", err)
}
conn, err := net.DialUDP("udp", nil, raddr)
if err != nil {
return nil, fmt.Errorf("failed to dial UDP: %w", err)
}
ts3c := &TS3Conn{
conn: conn,
readQueue: make(chan *protocol.Packet, 100),
closeChan: make(chan struct{}),
}
ts3c.startReader()
return ts3c, nil
}
func (c *TS3Conn) startReader() {
c.wg.Add(1)
go func() {
defer c.wg.Done()
buf := make([]byte, 2048) // Max packet size should be around 500, but use larger buffer to be safe
for {
select {
case <-c.closeChan:
return
default:
c.conn.SetReadDeadline(time.Now().Add(1 * time.Second))
n, _, err := c.conn.ReadFromUDP(buf)
if err != nil {
if netErr, ok := err.(net.Error); ok && netErr.Timeout() {
continue
}
// If closed, return
select {
case <-c.closeChan:
return
default:
fmt.Printf("Error reading valid UDP packet: %v\n", err)
continue
}
}
// Parse packet
pkt, err := protocol.Decode(buf[:n], false) // Server -> Client
if err != nil {
fmt.Printf("Failed to decode packet: %v\n", err)
continue
}
select {
case c.readQueue <- pkt:
default:
fmt.Println("Read queue full, dropping packet")
}
}
}
}()
}
// SendPacket sends a packet to the server.
func (c *TS3Conn) SendPacket(pkt *protocol.Packet) error {
c.writeMu.Lock()
defer c.writeMu.Unlock()
// Client -> Server
bytes, err := pkt.Encode(true)
if err != nil {
return err
}
_, err = c.conn.Write(bytes)
return err
}
// ReadPacket returns the next received packet channel.
func (c *TS3Conn) PacketChan() <-chan *protocol.Packet {
return c.readQueue
}
// RemoteAddr returns the remote network address.
func (c *TS3Conn) RemoteAddr() net.Addr {
return c.conn.RemoteAddr()
}
// Close closes the connection.
func (c *TS3Conn) Close() error {
close(c.closeChan)
c.conn.Close()
c.wg.Wait()
return nil
}

11
timestamp.go Normal file
View File

@@ -0,0 +1,11 @@
package main
import (
"fmt"
"time"
)
func main() {
t, _ := time.Parse("2006-01-02 15:04:05", "2023-07-24 10:06:33")
fmt.Println(t.Unix())
}