feat(tui): add interactive 5-band per-user equalizer
This commit is contained in:
@@ -120,6 +120,9 @@ type Model struct {
|
||||
showUserView bool
|
||||
viewUser *UserNode
|
||||
pokeID uint16 // Target ID for pending poke
|
||||
|
||||
// Interactive EQ
|
||||
eqBandIdx int // 0-4
|
||||
}
|
||||
|
||||
// addLog adds a message to the log panel
|
||||
@@ -820,6 +823,28 @@ func (m *Model) handleUserViewKeys(msg tea.KeyMsg) (tea.Model, tea.Cmd) {
|
||||
newVol = 0.0
|
||||
}
|
||||
m.audioPlayer.SetUserVolume(u.ID, newVol)
|
||||
|
||||
case "right", "l":
|
||||
// Increase Gain for selected band
|
||||
current := m.audioPlayer.GetUserGain(u.ID, m.eqBandIdx)
|
||||
m.audioPlayer.SetUserGain(u.ID, m.eqBandIdx, current+1.0)
|
||||
|
||||
case "left", "h":
|
||||
// Decrease Gain
|
||||
current := m.audioPlayer.GetUserGain(u.ID, m.eqBandIdx)
|
||||
m.audioPlayer.SetUserGain(u.ID, m.eqBandIdx, current-1.0)
|
||||
|
||||
case "up", "k":
|
||||
m.eqBandIdx--
|
||||
if m.eqBandIdx < 0 {
|
||||
m.eqBandIdx = 4
|
||||
}
|
||||
|
||||
case "down", "j":
|
||||
m.eqBandIdx++
|
||||
if m.eqBandIdx > 4 {
|
||||
m.eqBandIdx = 0
|
||||
}
|
||||
}
|
||||
return m, nil
|
||||
}
|
||||
@@ -1412,14 +1437,85 @@ func (m *Model) renderUserView() string {
|
||||
"--- Audio Settings ---",
|
||||
fmt.Sprintf("%s %d%%", labelStyle.Render("Volume:"), int(vol*100)),
|
||||
fmt.Sprintf("%s %s", labelStyle.Render("Local Mute:"), muteStr),
|
||||
}
|
||||
|
||||
// EQ Visualization
|
||||
var eqGraph []string
|
||||
if m.audioPlayer != nil {
|
||||
bands := m.audioPlayer.GetEQBands(u.ID)
|
||||
if len(bands) > 0 {
|
||||
eqGraph = append(eqGraph, "", "--- Interactive Equalizer ---", "")
|
||||
|
||||
// Render bars for 5 bands
|
||||
// 0: Bass, 1: Low-Mid, 2: Mid, 3: High-Mid, 4: High
|
||||
labels := []string{"100Hz", "350Hz", "1kHz", "3kHz", "8kHz"}
|
||||
|
||||
for i, val := range bands {
|
||||
if i >= len(labels) {
|
||||
break
|
||||
}
|
||||
|
||||
// Get current gain setting
|
||||
gain := m.audioPlayer.GetUserGain(u.ID, i)
|
||||
|
||||
// Scale 0.0-1.0 to bars (width 20)
|
||||
const maxBars = 20
|
||||
bars := int(val * maxBars)
|
||||
if bars > maxBars {
|
||||
bars = maxBars
|
||||
}
|
||||
|
||||
// Bar characters: █ ▇ ▆ ▅ ▄ ▃ ▂
|
||||
barStr := ""
|
||||
if bars > 0 {
|
||||
barStr = strings.Repeat("█", bars)
|
||||
}
|
||||
|
||||
// Colorize based on intensity
|
||||
barStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("39")) // Blue default
|
||||
if val > 0.8 {
|
||||
barStyle = barStyle.Foreground(lipgloss.Color("196")) // Red clipping
|
||||
} else if val > 0.5 {
|
||||
barStyle = barStyle.Foreground(lipgloss.Color("208")) // Orange high
|
||||
} else if val > 0.2 {
|
||||
barStyle = barStyle.Foreground(lipgloss.Color("46")) // Green normal
|
||||
}
|
||||
|
||||
// Selection Indicator
|
||||
selector := " "
|
||||
labelStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("240")).Width(6)
|
||||
gainStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("245")).Width(6)
|
||||
|
||||
if i == m.eqBandIdx {
|
||||
selector = "->"
|
||||
labelStyle = labelStyle.Foreground(lipgloss.Color("226")).Bold(true) // Yellow for selected
|
||||
gainStyle = gainStyle.Foreground(lipgloss.Color("226"))
|
||||
}
|
||||
|
||||
gainStr := fmt.Sprintf("%+3.0fdB", gain)
|
||||
|
||||
line := fmt.Sprintf("%s %s %s | %s",
|
||||
selector,
|
||||
labelStyle.Render(labels[i]),
|
||||
gainStyle.Render(gainStr),
|
||||
barStyle.Render(fmt.Sprintf("%-20s", barStr)))
|
||||
|
||||
eqGraph = append(eqGraph, line)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
info = append(info, eqGraph...)
|
||||
info = append(info,
|
||||
"",
|
||||
"--- Menu ---",
|
||||
"1. Poke",
|
||||
"2. Toggle Local Mute",
|
||||
"+/-: Adjust Volume",
|
||||
"Arrows: Adjust EQ",
|
||||
"",
|
||||
"(Press ESC to close)",
|
||||
}
|
||||
)
|
||||
|
||||
return lipgloss.JoinVertical(lipgloss.Left, info...)
|
||||
}
|
||||
|
||||
135
pkg/audio/biquad.go
Normal file
135
pkg/audio/biquad.go
Normal file
@@ -0,0 +1,135 @@
|
||||
package audio
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// BiquadFilter represents a second-order IIR filter.
|
||||
// Formulas from RBJ Audio-EQ-Cookbook.
|
||||
type BiquadFilter struct {
|
||||
// Coefficients
|
||||
b0, b1, b2, a1, a2 float64
|
||||
|
||||
// State (history)
|
||||
x1, x2, y1, y2 float64
|
||||
}
|
||||
|
||||
// NewPeakingEQ creates a peaking EQ filter (boost/cut at specific frequency)
|
||||
// rate: sample rate (e.g. 48000)
|
||||
// freq: center frequency in Hz
|
||||
// q: quality factor (width of the bell)
|
||||
// dbGain: gain in decibels (e.g. +3.0, -6.0)
|
||||
func NewPeakingEQ(rate, freq, q, dbGain float64) *BiquadFilter {
|
||||
f := &BiquadFilter{}
|
||||
f.Configure(rate, freq, q, dbGain)
|
||||
return f
|
||||
}
|
||||
|
||||
// Configure recalculates coefficients
|
||||
func (f *BiquadFilter) Configure(rate, freq, q, dbGain float64) {
|
||||
// Intermediate variables
|
||||
A := math.Pow(10, dbGain/40)
|
||||
omega := 2 * math.Pi * freq / rate
|
||||
sn := math.Sin(omega)
|
||||
cs := math.Cos(omega)
|
||||
alpha := sn / (2 * q)
|
||||
|
||||
// Coefficients
|
||||
b0 := 1 + alpha*A
|
||||
b1 := -2 * cs
|
||||
b2 := 1 - alpha*A
|
||||
a0 := 1 + alpha/A
|
||||
a1 := -2 * cs
|
||||
a2 := 1 - alpha/A
|
||||
|
||||
// Normalize by a0
|
||||
invA0 := 1 / a0
|
||||
f.b0 = b0 * invA0
|
||||
f.b1 = b1 * invA0
|
||||
f.b2 = b2 * invA0
|
||||
f.a1 = a1 * invA0
|
||||
f.a2 = a2 * invA0
|
||||
}
|
||||
|
||||
// Process processes a single sample
|
||||
func (f *BiquadFilter) Process(in float64) float64 {
|
||||
// Difference equation:
|
||||
// y[n] = b0*x[n] + b1*x[n-1] + b2*x[n-2] - a1*y[n-1] - a2*y[n-2]
|
||||
out := f.b0*in + f.b1*f.x1 + f.b2*f.x2 - f.a1*f.y1 - f.a2*f.y2
|
||||
|
||||
// Update history
|
||||
f.x2 = f.x1
|
||||
f.x1 = in
|
||||
f.y2 = f.y1
|
||||
f.y1 = out
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// Reset clears the filter memory
|
||||
func (f *BiquadFilter) Reset() {
|
||||
f.x1, f.x2, f.y1, f.y2 = 0, 0, 0, 0
|
||||
}
|
||||
|
||||
// EQChain manages a cascade of filters (our 5 bands)
|
||||
type EQChain struct {
|
||||
Filters []*BiquadFilter
|
||||
}
|
||||
|
||||
// NewEQChain creates the standard 5-band EQ chain
|
||||
func NewEQChain(sampleRate float64) *EQChain {
|
||||
return &EQChain{
|
||||
Filters: []*BiquadFilter{
|
||||
NewPeakingEQ(sampleRate, 100, 1.0, 0), // SUB (Reduced from 1000 to proper bass freq)
|
||||
NewPeakingEQ(sampleRate, 350, 1.0, 0), // LOW
|
||||
NewPeakingEQ(sampleRate, 1000, 1.0, 0), // MID
|
||||
NewPeakingEQ(sampleRate, 3000, 1.0, 0), // HI
|
||||
NewPeakingEQ(sampleRate, 8000, 1.0, 0), // AIR
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// SetGain sets the gain for a specific band index (0-4)
|
||||
func (e *EQChain) SetGain(bandIdx int, dbGain float64) {
|
||||
if bandIdx < 0 || bandIdx >= len(e.Filters) {
|
||||
return
|
||||
}
|
||||
|
||||
rate := 48000.0 // Assuming fixed rate for now
|
||||
// Frequencies map to our standard bands
|
||||
freqs := []float64{100, 350, 1000, 3000, 8000}
|
||||
|
||||
e.Filters[bandIdx].Configure(rate, freqs[bandIdx], 1.0, dbGain)
|
||||
}
|
||||
|
||||
// Reset clears history of all filters
|
||||
func (e *EQChain) Reset() {
|
||||
for _, f := range e.Filters {
|
||||
f.Reset()
|
||||
}
|
||||
}
|
||||
|
||||
// ProcessBlock processes a slice of samples in-place (or returns new slice)
|
||||
// We'll return a new float buffer for FFT analysis anyway
|
||||
func (e *EQChain) Process(samples []int16) []int16 {
|
||||
out := make([]int16, len(samples))
|
||||
|
||||
for i, s := range samples {
|
||||
val := float64(s)
|
||||
|
||||
// Run through cascade
|
||||
for _, f := range e.Filters {
|
||||
val = f.Process(val)
|
||||
}
|
||||
|
||||
// Clip
|
||||
if val > 32767 {
|
||||
val = 32767
|
||||
} else if val < -32768 {
|
||||
val = -32768
|
||||
}
|
||||
|
||||
out[i] = int16(val)
|
||||
}
|
||||
return out
|
||||
}
|
||||
@@ -8,6 +8,8 @@ const (
|
||||
|
||||
// UserSettings represents per-user audio configuration
|
||||
type UserSettings struct {
|
||||
Volume float32 // 0.0 - 1.0 (or higher for boost)
|
||||
Muted bool
|
||||
Volume float32 // 0.0 - 1.0 (or higher for boost)
|
||||
Muted bool
|
||||
Gains []float64 // 5-band Equalizer Gains in dB
|
||||
EQBands []float64
|
||||
}
|
||||
|
||||
138
pkg/audio/fft.go
Normal file
138
pkg/audio/fft.go
Normal file
@@ -0,0 +1,138 @@
|
||||
package audio
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// CalculateEQBands computes frequency magnitudes for 5 EQ bands from PCM samples.
|
||||
// It uses a simplified approach tailored for visualization:
|
||||
// 1. Converts int16 PCM to float64
|
||||
// 2. Applies a Window function (Hanning)
|
||||
// 3. Performs a simple DFT (Discrete Fourier Transform) - sufficient for small N/visualization
|
||||
// 4. Aggregates bins into 5 bands: Bass, Low-Mid, Mid, Hybrid-High, High
|
||||
func CalculateEQBands(samples []int16, sampleRate int) []float64 {
|
||||
// We'll use a relatively small window size for responsiveness and performance
|
||||
// 512 samples at 48kHz is ~10ms, which is very fast.
|
||||
// 1024 samples is ~21ms.
|
||||
|
||||
const windowSize = 1024
|
||||
if len(samples) < windowSize {
|
||||
// Not enough data, return empty or zeroed bands
|
||||
// Pad with zeros if we really wanted to processing, but for vis just return what we have?
|
||||
// Actually, let's just make a copy and pad with zeros to windowSize
|
||||
padded := make([]int16, windowSize)
|
||||
copy(padded, samples)
|
||||
samples = padded
|
||||
} else {
|
||||
// Take the last windowSize samples (most recent audio)
|
||||
samples = samples[len(samples)-windowSize:]
|
||||
}
|
||||
|
||||
// Prepare complex input
|
||||
real := make([]float64, windowSize)
|
||||
imag := make([]float64, windowSize)
|
||||
|
||||
// Apply Hanning Window
|
||||
for i := 0; i < windowSize; i++ {
|
||||
val := float64(samples[i]) / 32768.0 // Normalize to -1.0..1.0
|
||||
// Hanning window formula
|
||||
window := 0.5 * (1 - math.Cos(2*math.Pi*float64(i)/float64(windowSize-1)))
|
||||
real[i] = val * window
|
||||
}
|
||||
|
||||
// Perform basic FFT (Cooley-Tukey)
|
||||
// Since windowSize is power of 2 (1024), we can use a recursive or iterative FFT.
|
||||
// For simplicity in a single file without deps, we'll write a small recursive one or iterative.
|
||||
// Given typical Go performance, a simple recursive one is fine for N=1024 per user talk event.
|
||||
fft(real, imag)
|
||||
|
||||
// Calculate magnitudes and bucket into bands
|
||||
// Freq resolution = SampleRate / WindowSize = 48000 / 1024 ~= 46.875 Hz per bin
|
||||
// Nyquist = 24000 Hz (Bin 512)
|
||||
|
||||
// Band definitions (approximate range):
|
||||
// 1. Sub/Bass: 0 - 250 Hz (Bins 0-5)
|
||||
// 2. Low Mids: 250 - 500 Hz (Bins 6-10)
|
||||
// 3. Mids: 500 - 2000 Hz (Bins 11-42)
|
||||
// 4. Upper Mids: 2000 - 4000 Hz (Bins 43-85)
|
||||
// 5. Highs: 4000Hz+ (Bins 86-512)
|
||||
|
||||
bands := make([]float64, 5)
|
||||
|
||||
// Helper to collect energy
|
||||
collectEnergy := func(startBin, endBin int) float64 {
|
||||
sum := 0.0
|
||||
for i := startBin; i <= endBin && i < windowSize/2; i++ {
|
||||
// Magnitude = sqrt(re^2 + im^2)
|
||||
mag := math.Sqrt(real[i]*real[i] + imag[i]*imag[i])
|
||||
sum += mag
|
||||
}
|
||||
// Average
|
||||
count := float64(endBin - startBin + 1)
|
||||
if count > 0 {
|
||||
return sum / count
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
bands[0] = collectEnergy(1, 6) // Skip DC (bin 0)
|
||||
bands[1] = collectEnergy(7, 12)
|
||||
bands[2] = collectEnergy(13, 45)
|
||||
bands[3] = collectEnergy(46, 90)
|
||||
bands[4] = collectEnergy(91, 511)
|
||||
|
||||
// Normalize output for visualization (0.0 to 1.0)
|
||||
// We need some scaling factor. Based on expected signals.
|
||||
const scale = 50.0 // heuristic
|
||||
for i := range bands {
|
||||
bands[i] = bands[i] * scale
|
||||
if bands[i] > 1.0 {
|
||||
bands[i] = 1.0
|
||||
}
|
||||
}
|
||||
|
||||
return bands
|
||||
}
|
||||
|
||||
// Simple in-place Cooley-Tukey FFT.
|
||||
// n must be power of 2.
|
||||
func fft(real, imag []float64) {
|
||||
n := len(real)
|
||||
if n <= 1 {
|
||||
return
|
||||
}
|
||||
|
||||
// Split even and odd
|
||||
half := n / 2
|
||||
realEven := make([]float64, half)
|
||||
imagEven := make([]float64, half)
|
||||
realOdd := make([]float64, half)
|
||||
imagOdd := make([]float64, half)
|
||||
|
||||
for i := 0; i < half; i++ {
|
||||
realEven[i] = real[2*i]
|
||||
imagEven[i] = imag[2*i]
|
||||
realOdd[i] = real[2*i+1]
|
||||
imagOdd[i] = imag[2*i+1]
|
||||
}
|
||||
|
||||
// Recursion
|
||||
fft(realEven, imagEven)
|
||||
fft(realOdd, imagOdd)
|
||||
|
||||
// Combine
|
||||
for k := 0; k < half; k++ {
|
||||
tReal := math.Cos(-2 * math.Pi * float64(k) / float64(n))
|
||||
tImag := math.Sin(-2 * math.Pi * float64(k) / float64(n))
|
||||
|
||||
// Multiply odd by twist factor (tReal+itImag) * (oddReal+iOddImag)
|
||||
// (ac - bd) + i(ad + bc)
|
||||
twistReal := tReal*realOdd[k] - tImag*imagOdd[k]
|
||||
twistImag := tReal*imagOdd[k] + tImag*realOdd[k]
|
||||
|
||||
real[k] = realEven[k] + twistReal
|
||||
imag[k] = imagEven[k] + twistImag
|
||||
real[k+half] = realEven[k] - twistReal
|
||||
imag[k+half] = imagEven[k] - twistImag
|
||||
}
|
||||
}
|
||||
@@ -30,6 +30,9 @@ type Player struct {
|
||||
// map[SenderID] -> AudioQueue
|
||||
userBuffers map[uint16][]int16
|
||||
|
||||
// User EQs (DSP Filters)
|
||||
userEQs map[uint16]*EQChain
|
||||
|
||||
// User settings
|
||||
userSettings map[uint16]*UserSettings
|
||||
bufferMu sync.Mutex
|
||||
@@ -108,6 +111,7 @@ func NewPlayer() (*Player, error) {
|
||||
muted: false,
|
||||
stopChan: make(chan struct{}),
|
||||
userBuffers: make(map[uint16][]int16),
|
||||
userEQs: make(map[uint16]*EQChain),
|
||||
userSettings: make(map[uint16]*UserSettings),
|
||||
}, nil
|
||||
}
|
||||
@@ -171,6 +175,53 @@ func (p *Player) PlayPCM(senderID uint16, samples []int16) {
|
||||
return
|
||||
}
|
||||
|
||||
// Apply EQ Filters if gains are non-zero
|
||||
p.ensureEQ(senderID)
|
||||
|
||||
// Check if any band has gain != 0
|
||||
hasActiveEQ := false
|
||||
if settings, ok := p.userSettings[senderID]; ok && len(settings.Gains) == 5 {
|
||||
for _, g := range settings.Gains {
|
||||
if g != 0 {
|
||||
hasActiveEQ = true
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply filters if needed
|
||||
// Note: We should probably process always if we want smooth transitions,
|
||||
// but for optimization we skip if all 0.
|
||||
// However, skipping might cause clicks if we jump from filtered to non-filtered state abruptly.
|
||||
// For "Pro" audio, always process. For TUI app, let's process if active.
|
||||
if hasActiveEQ {
|
||||
if eq, ok := p.userEQs[senderID]; ok {
|
||||
// Update gains from settings
|
||||
// (Ideally we only do this on change, but doing it here ensures sync)
|
||||
gains := p.userSettings[senderID].Gains
|
||||
for i, g := range gains {
|
||||
eq.SetGain(i, g)
|
||||
}
|
||||
|
||||
// Process in-place (conceptually) - actually implementation creates new slice
|
||||
samples = eq.Process(samples)
|
||||
}
|
||||
} else {
|
||||
// Even if not active, we might want to reset filters if they were active before?
|
||||
// Or just leave them alone.
|
||||
}
|
||||
|
||||
// Calculate EQ bands for visualization
|
||||
// We do this BEFORE appending to buffer to ensure we have visual feedback even if buffer is full/lagging
|
||||
// This is a "fire and forget" calculation for UI
|
||||
bands := CalculateEQBands(samples, 48000)
|
||||
|
||||
// Update user settings with new bands
|
||||
if _, ok := p.userSettings[senderID]; !ok {
|
||||
p.userSettings[senderID] = &UserSettings{Volume: 1.0, Muted: false}
|
||||
}
|
||||
p.userSettings[senderID].EQBands = bands
|
||||
|
||||
// Append to user's specific buffer
|
||||
// This ensures sequential playback for the same user
|
||||
p.userBuffers[senderID] = append(p.userBuffers[senderID], samples...)
|
||||
@@ -249,6 +300,66 @@ func (p *Player) GetUserSettings(clientID uint16) (float32, bool) {
|
||||
return 1.0, false
|
||||
}
|
||||
|
||||
// GetEQBands returns the current 5-band EQ values for a user (0.0-1.0)
|
||||
func (p *Player) GetEQBands(clientID uint16) []float64 {
|
||||
p.bufferMu.Lock()
|
||||
defer p.bufferMu.Unlock()
|
||||
|
||||
if settings, ok := p.userSettings[clientID]; ok {
|
||||
return settings.EQBands
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// SetUserGain sets the EQ gain for a specific band (0-4) and user.
|
||||
// Gain is in dB (e.g. -12.0 to +12.0)
|
||||
func (p *Player) SetUserGain(clientID uint16, bandIdx int, gainDb float64) {
|
||||
p.bufferMu.Lock()
|
||||
defer p.bufferMu.Unlock()
|
||||
|
||||
p.ensureUserSettings(clientID)
|
||||
|
||||
// Ensure Gains slice exists
|
||||
if len(p.userSettings[clientID].Gains) != 5 {
|
||||
p.userSettings[clientID].Gains = make([]float64, 5)
|
||||
}
|
||||
|
||||
if bandIdx >= 0 && bandIdx < 5 {
|
||||
p.userSettings[clientID].Gains[bandIdx] = gainDb
|
||||
}
|
||||
}
|
||||
|
||||
// GetUserGain returns the gain for a band
|
||||
func (p *Player) GetUserGain(clientID uint16, bandIdx int) float64 {
|
||||
p.bufferMu.Lock()
|
||||
defer p.bufferMu.Unlock()
|
||||
|
||||
if settings, ok := p.userSettings[clientID]; ok {
|
||||
if len(settings.Gains) > bandIdx {
|
||||
return settings.Gains[bandIdx]
|
||||
}
|
||||
}
|
||||
return 0.0
|
||||
}
|
||||
|
||||
func (p *Player) ensureUserSettings(clientID uint16) {
|
||||
if _, ok := p.userSettings[clientID]; !ok {
|
||||
p.userSettings[clientID] = &UserSettings{
|
||||
Volume: 1.0,
|
||||
Muted: false,
|
||||
Gains: make([]float64, 5),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (p *Player) ensureEQ(clientID uint16) {
|
||||
if _, ok := p.userEQs[clientID]; !ok {
|
||||
// New EQ chain
|
||||
// Assume 48000 Hz, would be better to pass actual stream rate
|
||||
p.userEQs[clientID] = NewEQChain(48000)
|
||||
}
|
||||
}
|
||||
|
||||
func (p *Player) playbackLoop() {
|
||||
ticker := time.NewTicker(10 * time.Millisecond)
|
||||
defer ticker.Stop()
|
||||
|
||||
Reference in New Issue
Block a user