feat(audio): optimize equalizer with stereo support and gain caching
This commit is contained in:
1
go.mod
1
go.mod
@@ -30,6 +30,7 @@ require (
|
||||
github.com/mattn/go-isatty v0.0.20 // indirect
|
||||
github.com/mattn/go-localereader v0.0.1 // indirect
|
||||
github.com/mattn/go-runewidth v0.0.16 // indirect
|
||||
github.com/moutend/go-equalizer v0.1.0 // indirect
|
||||
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 // indirect
|
||||
github.com/muesli/cancelreader v0.2.2 // indirect
|
||||
github.com/muesli/termenv v0.16.0 // indirect
|
||||
|
||||
2
go.sum
2
go.sum
@@ -32,6 +32,8 @@ github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2J
|
||||
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
|
||||
github.com/mattn/go-runewidth v0.0.16 h1:E5ScNMtiwvlvB5paMFdw9p4kSQzbXFikJ5SQO6TULQc=
|
||||
github.com/mattn/go-runewidth v0.0.16/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
|
||||
github.com/moutend/go-equalizer v0.1.0 h1:FDFsTr/zKUpLbNXZQmCMRDgisQhXxFOnX2q0PllJvxs=
|
||||
github.com/moutend/go-equalizer v0.1.0/go.mod h1:iahcZcStDm66TNtrkMIhrQuhWdiWbFKSVjZ8yn+7Cgw=
|
||||
github.com/moutend/go-wca v0.3.0 h1:IzhsQ44zBzMdT42xlBjiLSVya9cPYOoKx9E+yXVhFo8=
|
||||
github.com/moutend/go-wca v0.3.0/go.mod h1:7VrPO512jnjFGJ6rr+zOoCfiYjOHRPNfbttJuxAurcw=
|
||||
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 h1:ZK8zHtRHOkbHy6Mmr5D264iyp3TiX5OmNcI5cIARiQI=
|
||||
|
||||
@@ -1,97 +1,53 @@
|
||||
package audio
|
||||
|
||||
import (
|
||||
"math"
|
||||
"github.com/moutend/go-equalizer/pkg/equalizer"
|
||||
)
|
||||
|
||||
// BiquadFilter represents a second-order IIR filter.
|
||||
// Formulas from RBJ Audio-EQ-Cookbook.
|
||||
type BiquadFilter struct {
|
||||
// Coefficients
|
||||
b0, b1, b2, a1, a2 float64
|
||||
|
||||
// State (history)
|
||||
x1, x2, y1, y2 float64
|
||||
}
|
||||
|
||||
// NewPeakingEQ creates a peaking EQ filter (boost/cut at specific frequency)
|
||||
// rate: sample rate (e.g. 48000)
|
||||
// freq: center frequency in Hz
|
||||
// q: quality factor (width of the bell)
|
||||
// dbGain: gain in decibels (e.g. +3.0, -6.0)
|
||||
func NewPeakingEQ(rate, freq, q, dbGain float64) *BiquadFilter {
|
||||
f := &BiquadFilter{}
|
||||
f.Configure(rate, freq, q, dbGain)
|
||||
return f
|
||||
}
|
||||
|
||||
// Configure recalculates coefficients
|
||||
func (f *BiquadFilter) Configure(rate, freq, q, dbGain float64) {
|
||||
// Intermediate variables
|
||||
A := math.Pow(10, dbGain/40)
|
||||
omega := 2 * math.Pi * freq / rate
|
||||
sn := math.Sin(omega)
|
||||
cs := math.Cos(omega)
|
||||
alpha := sn / (2 * q)
|
||||
|
||||
// Coefficients
|
||||
b0 := 1 + alpha*A
|
||||
b1 := -2 * cs
|
||||
b2 := 1 - alpha*A
|
||||
a0 := 1 + alpha/A
|
||||
a1 := -2 * cs
|
||||
a2 := 1 - alpha/A
|
||||
|
||||
// Normalize by a0
|
||||
invA0 := 1 / a0
|
||||
f.b0 = b0 * invA0
|
||||
f.b1 = b1 * invA0
|
||||
f.b2 = b2 * invA0
|
||||
f.a1 = a1 * invA0
|
||||
f.a2 = a2 * invA0
|
||||
}
|
||||
|
||||
// Process processes a single sample
|
||||
func (f *BiquadFilter) Process(in float64) float64 {
|
||||
// Difference equation:
|
||||
// y[n] = b0*x[n] + b1*x[n-1] + b2*x[n-2] - a1*y[n-1] - a2*y[n-2]
|
||||
out := f.b0*in + f.b1*f.x1 + f.b2*f.x2 - f.a1*f.y1 - f.a2*f.y2
|
||||
|
||||
// Update history
|
||||
f.x2 = f.x1
|
||||
f.x1 = in
|
||||
f.y2 = f.y1
|
||||
f.y1 = out
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// Reset clears the filter memory
|
||||
func (f *BiquadFilter) Reset() {
|
||||
f.x1, f.x2, f.y1, f.y2 = 0, 0, 0, 0
|
||||
}
|
||||
|
||||
// EQChain manages a cascade of filters (our 5 bands)
|
||||
// EQChain manages a cascade of filters using go-equalizer library
|
||||
// Now supports Stereo processing (Left/Right)
|
||||
// EQChain manages a cascade of filters using go-equalizer library
|
||||
// Now supports Stereo processing (Left/Right)
|
||||
type EQChain struct {
|
||||
Filters []*BiquadFilter
|
||||
FiltersLeft []*equalizer.Filter
|
||||
FiltersRight []*equalizer.Filter
|
||||
buffer []float64 // Reusable scratch buffer for processing
|
||||
currentGains []float64 // Cache of current gain values
|
||||
}
|
||||
|
||||
// NewEQChain creates the standard 5-band EQ chain
|
||||
// NewEQChain creates the standard 5-band EQ chain (Stereo)
|
||||
func NewEQChain(sampleRate float64) *EQChain {
|
||||
// Standard bands: 100, 350, 1000, 3000, 8000
|
||||
// Width = 1.0 (approx 1 octave)
|
||||
|
||||
createChain := func() []*equalizer.Filter {
|
||||
f1 := equalizer.NewPeaking(sampleRate, 100, 1.0, 0)
|
||||
f2 := equalizer.NewPeaking(sampleRate, 350, 1.0, 0)
|
||||
f3 := equalizer.NewPeaking(sampleRate, 1000, 1.0, 0)
|
||||
f4 := equalizer.NewPeaking(sampleRate, 3000, 1.0, 0)
|
||||
f5 := equalizer.NewPeaking(sampleRate, 8000, 1.0, 0)
|
||||
return []*equalizer.Filter{f1, f2, f3, f4, f5}
|
||||
}
|
||||
|
||||
return &EQChain{
|
||||
Filters: []*BiquadFilter{
|
||||
NewPeakingEQ(sampleRate, 100, 1.0, 0), // SUB (Reduced from 1000 to proper bass freq)
|
||||
NewPeakingEQ(sampleRate, 350, 1.0, 0), // LOW
|
||||
NewPeakingEQ(sampleRate, 1000, 1.0, 0), // MID
|
||||
NewPeakingEQ(sampleRate, 3000, 1.0, 0), // HI
|
||||
NewPeakingEQ(sampleRate, 8000, 1.0, 0), // AIR
|
||||
},
|
||||
FiltersLeft: createChain(),
|
||||
FiltersRight: createChain(),
|
||||
buffer: make([]float64, 1920), // Pre-allocate for Stereo 20ms frame (960*2)
|
||||
currentGains: make([]float64, 5), // Initialize cache with 0.0
|
||||
}
|
||||
}
|
||||
|
||||
// SetGain sets the gain for a specific band index (0-4)
|
||||
func (e *EQChain) SetGain(bandIdx int, dbGain float64) {
|
||||
if bandIdx < 0 || bandIdx >= len(e.Filters) {
|
||||
if bandIdx < 0 || bandIdx >= 5 {
|
||||
return
|
||||
}
|
||||
|
||||
// Optimization: If gain hasn't changed, DO NOT recreate filter.
|
||||
// Recreating the filter resets its internal history state (bi-quad delay buffers),
|
||||
// causing audible clicks/pops (discontinuities) at every 20ms frame boundary.
|
||||
const epsilon = 0.001
|
||||
if delta := dbGain - e.currentGains[bandIdx]; delta > -epsilon && delta < epsilon {
|
||||
return
|
||||
}
|
||||
|
||||
@@ -99,37 +55,81 @@ func (e *EQChain) SetGain(bandIdx int, dbGain float64) {
|
||||
// Frequencies map to our standard bands
|
||||
freqs := []float64{100, 350, 1000, 3000, 8000}
|
||||
|
||||
e.Filters[bandIdx].Configure(rate, freqs[bandIdx], 1.0, dbGain)
|
||||
// Create new filter with updated gain
|
||||
// We use width=1.0 consistent with constructor
|
||||
// Update BOTH Left and Right to keep balance
|
||||
e.FiltersLeft[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
|
||||
e.FiltersRight[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
|
||||
|
||||
// Update cache
|
||||
e.currentGains[bandIdx] = dbGain
|
||||
}
|
||||
|
||||
// Reset clears history of all filters
|
||||
func (e *EQChain) Reset() {
|
||||
for _, f := range e.Filters {
|
||||
f.Reset()
|
||||
}
|
||||
// The library does not expose a Reset method.
|
||||
}
|
||||
|
||||
// ProcessBlock processes a slice of samples in-place (or returns new slice)
|
||||
// We'll return a new float buffer for FFT analysis anyway
|
||||
// Process processes a slice of samples (Interleaved Stereo)
|
||||
func (e *EQChain) Process(samples []int16) []int16 {
|
||||
out := make([]int16, len(samples))
|
||||
// Grow buffer if needed
|
||||
if cap(e.buffer) < len(samples) {
|
||||
e.buffer = make([]float64, len(samples))
|
||||
}
|
||||
e.buffer = e.buffer[:len(samples)]
|
||||
|
||||
// Float conversion with normalization (-1.0 to 1.0)
|
||||
// We also apply a slight pre-attenuation (Headroom) to avoid clipping when boosting EQ.
|
||||
// -3dB = 0.707
|
||||
const headroom = 0.707
|
||||
const norm = 1.0 / 32768.0
|
||||
|
||||
for i, s := range samples {
|
||||
val := float64(s)
|
||||
|
||||
// Run through cascade
|
||||
for _, f := range e.Filters {
|
||||
val = f.Process(val)
|
||||
e.buffer[i] = float64(s) * norm * headroom
|
||||
}
|
||||
|
||||
// Clip
|
||||
// Filter processing
|
||||
// Input is assumed to be Interleaved Stereo: L, R, L, R...
|
||||
// We iterate by 2 to process pairs.
|
||||
|
||||
for i := 0; i < len(e.buffer); i += 2 {
|
||||
if i+1 >= len(e.buffer) {
|
||||
break
|
||||
}
|
||||
|
||||
valL := e.buffer[i]
|
||||
valR := e.buffer[i+1]
|
||||
|
||||
// Run through LEFT chain
|
||||
for _, f := range e.FiltersLeft {
|
||||
valL = f.Apply(valL)
|
||||
}
|
||||
|
||||
// Run through RIGHT chain
|
||||
for _, f := range e.FiltersRight {
|
||||
valR = f.Apply(valR)
|
||||
}
|
||||
|
||||
// Write back to buffer
|
||||
e.buffer[i] = valL
|
||||
e.buffer[i+1] = valR
|
||||
}
|
||||
|
||||
// Convert back to int16
|
||||
for i, val := range e.buffer {
|
||||
// Denormalize
|
||||
val = val * 32767.0
|
||||
|
||||
// Hard clipping
|
||||
if val > 32767 {
|
||||
val = 32767
|
||||
} else if val < -32768 {
|
||||
val = -32768
|
||||
}
|
||||
|
||||
out[i] = int16(val)
|
||||
// Write back directly to samples
|
||||
samples[i] = int16(val)
|
||||
}
|
||||
return out
|
||||
|
||||
return samples
|
||||
}
|
||||
|
||||
@@ -83,7 +83,7 @@ func CalculateEQBands(samples []int16, sampleRate int) []float64 {
|
||||
|
||||
// Normalize output for visualization (0.0 to 1.0)
|
||||
// We need some scaling factor. Based on expected signals.
|
||||
const scale = 50.0 // heuristic
|
||||
const scale = 10.0 // Reduced from 50.0 to fix saturation
|
||||
for i := range bands {
|
||||
bands[i] = bands[i] * scale
|
||||
if bands[i] > 1.0 {
|
||||
|
||||
@@ -69,11 +69,11 @@ func NewPlayer() (*Player, error) {
|
||||
|
||||
waveFormat := &wca.WAVEFORMATEX{
|
||||
WFormatTag: wca.WAVE_FORMAT_PCM,
|
||||
NChannels: 1,
|
||||
NChannels: 2, // STEREO
|
||||
NSamplesPerSec: 48000,
|
||||
WBitsPerSample: 16,
|
||||
NBlockAlign: 2,
|
||||
NAvgBytesPerSec: 96000,
|
||||
NBlockAlign: 4, // 16bit * 2 channels / 8 = 4 bytes
|
||||
NAvgBytesPerSec: 192000, // 48000 * 4
|
||||
CbSize: 0,
|
||||
}
|
||||
|
||||
@@ -167,21 +167,33 @@ func (p *Player) PlayPCM(senderID uint16, samples []int16) {
|
||||
return
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------
|
||||
// PHASE 1: Read Configuration (Safe Copy)
|
||||
// ---------------------------------------------------------
|
||||
p.bufferMu.Lock()
|
||||
defer p.bufferMu.Unlock()
|
||||
|
||||
// Check per-user mute
|
||||
if settings, ok := p.userSettings[senderID]; ok && settings.Muted {
|
||||
settings, hasSettings := p.userSettings[senderID]
|
||||
if hasSettings && settings.Muted {
|
||||
p.bufferMu.Unlock()
|
||||
return
|
||||
}
|
||||
|
||||
// Apply EQ Filters if gains are non-zero
|
||||
p.ensureEQ(senderID)
|
||||
// Get EQ Instance (Create if needed)
|
||||
if _, ok := p.userEQs[senderID]; !ok {
|
||||
p.userEQs[senderID] = NewEQChain(48000)
|
||||
}
|
||||
userEQ := p.userEQs[senderID]
|
||||
|
||||
// Check if any band has gain != 0
|
||||
// Check/Copy Gains
|
||||
var gains []float64
|
||||
hasActiveEQ := false
|
||||
if settings, ok := p.userSettings[senderID]; ok && len(settings.Gains) == 5 {
|
||||
for _, g := range settings.Gains {
|
||||
if hasSettings && len(settings.Gains) == 5 {
|
||||
// Copy gains to avoid race if UI changes them while we process
|
||||
gains = make([]float64, 5)
|
||||
copy(gains, settings.Gains)
|
||||
|
||||
for _, g := range gains {
|
||||
if g != 0 {
|
||||
hasActiveEQ = true
|
||||
break
|
||||
@@ -189,33 +201,59 @@ func (p *Player) PlayPCM(senderID uint16, samples []int16) {
|
||||
}
|
||||
}
|
||||
|
||||
// Apply filters if needed
|
||||
// Note: We should probably process always if we want smooth transitions,
|
||||
// but for optimization we skip if all 0.
|
||||
// However, skipping might cause clicks if we jump from filtered to non-filtered state abruptly.
|
||||
// For "Pro" audio, always process. For TUI app, let's process if active.
|
||||
if hasActiveEQ {
|
||||
if eq, ok := p.userEQs[senderID]; ok {
|
||||
// Update gains from settings
|
||||
// (Ideally we only do this on change, but doing it here ensures sync)
|
||||
gains := p.userSettings[senderID].Gains
|
||||
for i, g := range gains {
|
||||
eq.SetGain(i, g)
|
||||
}
|
||||
p.bufferMu.Unlock()
|
||||
// ---------------------------------------------------------
|
||||
// END PHASE 1 (Lock Released)
|
||||
// ---------------------------------------------------------
|
||||
|
||||
// Process in-place (conceptually) - actually implementation creates new slice
|
||||
samples = eq.Process(samples)
|
||||
// ---------------------------------------------------------
|
||||
// PHASE 2: Heavy Processing (Concurrent)
|
||||
// ---------------------------------------------------------
|
||||
|
||||
// Normalize to Stereo (Interleaved)
|
||||
// If input is Mono (960 samples), expand to Stereo (1920 samples)
|
||||
// If input is already Stereo, using it as is.
|
||||
var stereoSamples []int16
|
||||
|
||||
if len(samples) < 1500 { // Heuristic for Mono (960)
|
||||
stereoSamples = make([]int16, len(samples)*2)
|
||||
for i, s := range samples {
|
||||
stereoSamples[i*2] = s
|
||||
stereoSamples[i*2+1] = s
|
||||
}
|
||||
} else {
|
||||
// Even if not active, we might want to reset filters if they were active before?
|
||||
// Or just leave them alone.
|
||||
// Already stereo (assumed)
|
||||
stereoSamples = make([]int16, len(samples))
|
||||
copy(stereoSamples, samples)
|
||||
}
|
||||
|
||||
// Apply EQ Filters if needed
|
||||
if hasActiveEQ {
|
||||
// Update gains on the private EQ instance (Thread-safe per user)
|
||||
for i, g := range gains {
|
||||
userEQ.SetGain(i, g)
|
||||
}
|
||||
// Process Stereo
|
||||
stereoSamples = userEQ.Process(stereoSamples)
|
||||
}
|
||||
|
||||
// Calculate EQ bands for visualization
|
||||
// We do this BEFORE appending to buffer to ensure we have visual feedback even if buffer is full/lagging
|
||||
// This is a "fire and forget" calculation for UI
|
||||
bands := CalculateEQBands(samples, 48000)
|
||||
// Downmix to Mono for FFT visualization to save CPU and complexity
|
||||
vizSamples := make([]int16, len(stereoSamples)/2)
|
||||
for i := 0; i < len(vizSamples); i++ {
|
||||
// Average L+R
|
||||
val := (int32(stereoSamples[i*2]) + int32(stereoSamples[i*2+1])) / 2
|
||||
vizSamples[i] = int16(val)
|
||||
}
|
||||
bands := CalculateEQBands(vizSamples, 48000)
|
||||
|
||||
// ---------------------------------------------------------
|
||||
// PHASE 3: Write Output (Lock Acquired)
|
||||
// ---------------------------------------------------------
|
||||
p.bufferMu.Lock()
|
||||
defer p.bufferMu.Unlock()
|
||||
|
||||
// Re-check existence (could have disconnected?)
|
||||
// Update user settings with new bands
|
||||
if _, ok := p.userSettings[senderID]; !ok {
|
||||
p.userSettings[senderID] = &UserSettings{Volume: 1.0, Muted: false}
|
||||
@@ -223,13 +261,18 @@ func (p *Player) PlayPCM(senderID uint16, samples []int16) {
|
||||
p.userSettings[senderID].EQBands = bands
|
||||
|
||||
// Append to user's specific buffer
|
||||
// This ensures sequential playback for the same user
|
||||
p.userBuffers[senderID] = append(p.userBuffers[senderID], samples...)
|
||||
p.userBuffers[senderID] = append(p.userBuffers[senderID], stereoSamples...)
|
||||
|
||||
// Limit buffer size per user to avoid memory leaks if stalled
|
||||
if len(p.userBuffers[senderID]) > 48000*2 { // 2 seconds max
|
||||
// Limit buffer size per user (Stereo 2sec = 48000*2*2 = 192000 items)
|
||||
// frameSamples is 960 (20ms). 2sec = 100 frames * 960 * 2 = 192000
|
||||
const maxBufferSize = 48000 * 2 * 2 // 2 seconds stereo
|
||||
if len(p.userBuffers[senderID]) > maxBufferSize {
|
||||
// Drop oldest
|
||||
drop := len(p.userBuffers[senderID]) - 48000
|
||||
drop := len(p.userBuffers[senderID]) - maxBufferSize
|
||||
// Ensure we drop aligned to stereo frame (even number)
|
||||
if drop%2 != 0 {
|
||||
drop++
|
||||
}
|
||||
p.userBuffers[senderID] = p.userBuffers[senderID][drop:]
|
||||
}
|
||||
}
|
||||
@@ -389,7 +432,8 @@ func (p *Player) writeFrame() {
|
||||
p.bufferMu.Lock()
|
||||
|
||||
// Mix audio from all active user buffers
|
||||
mixed := make([]int32, frameSamples)
|
||||
// Stereo mixing: buffer size is frameSamples * 2
|
||||
mixed := make([]int32, frameSamples*2)
|
||||
activeUsers := 0
|
||||
hasAnyAudio := false
|
||||
|
||||
@@ -397,12 +441,15 @@ func (p *Player) writeFrame() {
|
||||
if len(buf) > 0 {
|
||||
hasAnyAudio = true
|
||||
activeUsers++
|
||||
// Take up to frameSamples from this user
|
||||
toTake := frameSamples
|
||||
if len(buf) < frameSamples {
|
||||
// Take up to frameSamples*2 (Stereo) from this user
|
||||
toTake := frameSamples * 2
|
||||
if len(buf) < int(frameSamples)*2 {
|
||||
toTake = len(buf)
|
||||
}
|
||||
|
||||
// Ensure we take pairs (alignment)
|
||||
toTake = toTake &^ 1 // clear lowest bit
|
||||
|
||||
for i := 0; i < toTake; i++ {
|
||||
sample := int32(buf[i])
|
||||
|
||||
@@ -415,10 +462,10 @@ func (p *Player) writeFrame() {
|
||||
}
|
||||
|
||||
// Advance buffer
|
||||
if len(buf) <= frameSamples {
|
||||
delete(p.userBuffers, id)
|
||||
if len(buf) <= toTake {
|
||||
delete(p.userBuffers, id) // Finished this buffer
|
||||
} else {
|
||||
p.userBuffers[id] = buf[frameSamples:]
|
||||
p.userBuffers[id] = buf[toTake:]
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -441,8 +488,19 @@ func (p *Player) writeFrame() {
|
||||
p.mu.Unlock()
|
||||
|
||||
// Write mixed samples with clipping protection and volume application
|
||||
bufSlice := unsafe.Slice(buffer, int(frameSamples)*2)
|
||||
for i := 0; i < int(frameSamples); i++ {
|
||||
// Output buffer is for Stereo (frameSamples * 2 channels)
|
||||
bufSlice := unsafe.Slice(buffer, int(frameSamples)*2*2) // *2 channels *2 bytes? No, unsafe.Slice takes count of Type.
|
||||
// If buffer is *byte, we need bytes. frameSamples * 2 channels * 2 bytes/sample.
|
||||
// Wait, GetBuffer returns BYTE pointer.
|
||||
// Let's use uint16 slice.
|
||||
|
||||
// The logic below was: binary.LittleEndian.PutUint16(bufSlice[i*2:], ...)
|
||||
// frameSamples was 960. loop 0..960.
|
||||
// Now we have Stereo mixed buffer. Length = frameSamples * 2.
|
||||
// We need to write frameSamples * 2 samples.
|
||||
|
||||
// Correct loop for Stereo:
|
||||
for i := 0; i < int(frameSamples)*2; i++ { // Iterate over all samples (L, R, L, R...)
|
||||
val := mixed[i]
|
||||
|
||||
// Apply master volume
|
||||
@@ -454,6 +512,10 @@ func (p *Player) writeFrame() {
|
||||
} else if val < -32768 {
|
||||
val = -32768
|
||||
}
|
||||
|
||||
// Map to output byte buffer
|
||||
// i is sample index. Each sample is 2 bytes.
|
||||
// Offset = i * 2.
|
||||
binary.LittleEndian.PutUint16(bufSlice[i*2:], uint16(val))
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user