Compare commits

..

2 Commits

Author SHA1 Message Date
Jose Luis Montañes Ojados
be929ce55a feat(audio): optimize equalizer with stereo support and gain caching
Some checks failed
Build and Release / build-linux (push) Failing after 33s
Build and Release / build-windows (push) Failing after 4m2s
Build and Release / release (push) Has been skipped
2026-01-17 20:49:16 +01:00
Jose Luis Montañes Ojados
711eb148df feat(tui): add interactive 5-band per-user equalizer 2026-01-17 20:25:58 +01:00
7 changed files with 570 additions and 23 deletions

View File

@@ -120,6 +120,9 @@ type Model struct {
showUserView bool showUserView bool
viewUser *UserNode viewUser *UserNode
pokeID uint16 // Target ID for pending poke pokeID uint16 // Target ID for pending poke
// Interactive EQ
eqBandIdx int // 0-4
} }
// addLog adds a message to the log panel // addLog adds a message to the log panel
@@ -820,6 +823,28 @@ func (m *Model) handleUserViewKeys(msg tea.KeyMsg) (tea.Model, tea.Cmd) {
newVol = 0.0 newVol = 0.0
} }
m.audioPlayer.SetUserVolume(u.ID, newVol) m.audioPlayer.SetUserVolume(u.ID, newVol)
case "right", "l":
// Increase Gain for selected band
current := m.audioPlayer.GetUserGain(u.ID, m.eqBandIdx)
m.audioPlayer.SetUserGain(u.ID, m.eqBandIdx, current+1.0)
case "left", "h":
// Decrease Gain
current := m.audioPlayer.GetUserGain(u.ID, m.eqBandIdx)
m.audioPlayer.SetUserGain(u.ID, m.eqBandIdx, current-1.0)
case "up", "k":
m.eqBandIdx--
if m.eqBandIdx < 0 {
m.eqBandIdx = 4
}
case "down", "j":
m.eqBandIdx++
if m.eqBandIdx > 4 {
m.eqBandIdx = 0
}
} }
return m, nil return m, nil
} }
@@ -1412,14 +1437,85 @@ func (m *Model) renderUserView() string {
"--- Audio Settings ---", "--- Audio Settings ---",
fmt.Sprintf("%s %d%%", labelStyle.Render("Volume:"), int(vol*100)), fmt.Sprintf("%s %d%%", labelStyle.Render("Volume:"), int(vol*100)),
fmt.Sprintf("%s %s", labelStyle.Render("Local Mute:"), muteStr), fmt.Sprintf("%s %s", labelStyle.Render("Local Mute:"), muteStr),
}
// EQ Visualization
var eqGraph []string
if m.audioPlayer != nil {
bands := m.audioPlayer.GetEQBands(u.ID)
if len(bands) > 0 {
eqGraph = append(eqGraph, "", "--- Interactive Equalizer ---", "")
// Render bars for 5 bands
// 0: Bass, 1: Low-Mid, 2: Mid, 3: High-Mid, 4: High
labels := []string{"100Hz", "350Hz", "1kHz", "3kHz", "8kHz"}
for i, val := range bands {
if i >= len(labels) {
break
}
// Get current gain setting
gain := m.audioPlayer.GetUserGain(u.ID, i)
// Scale 0.0-1.0 to bars (width 20)
const maxBars = 20
bars := int(val * maxBars)
if bars > maxBars {
bars = maxBars
}
// Bar characters: █ ▇ ▆ ▅ ▄ ▃ ▂
barStr := ""
if bars > 0 {
barStr = strings.Repeat("█", bars)
}
// Colorize based on intensity
barStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("39")) // Blue default
if val > 0.8 {
barStyle = barStyle.Foreground(lipgloss.Color("196")) // Red clipping
} else if val > 0.5 {
barStyle = barStyle.Foreground(lipgloss.Color("208")) // Orange high
} else if val > 0.2 {
barStyle = barStyle.Foreground(lipgloss.Color("46")) // Green normal
}
// Selection Indicator
selector := " "
labelStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("240")).Width(6)
gainStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("245")).Width(6)
if i == m.eqBandIdx {
selector = "->"
labelStyle = labelStyle.Foreground(lipgloss.Color("226")).Bold(true) // Yellow for selected
gainStyle = gainStyle.Foreground(lipgloss.Color("226"))
}
gainStr := fmt.Sprintf("%+3.0fdB", gain)
line := fmt.Sprintf("%s %s %s | %s",
selector,
labelStyle.Render(labels[i]),
gainStyle.Render(gainStr),
barStyle.Render(fmt.Sprintf("%-20s", barStr)))
eqGraph = append(eqGraph, line)
}
}
}
info = append(info, eqGraph...)
info = append(info,
"", "",
"--- Menu ---", "--- Menu ---",
"1. Poke", "1. Poke",
"2. Toggle Local Mute", "2. Toggle Local Mute",
"+/-: Adjust Volume", "+/-: Adjust Volume",
"Arrows: Adjust EQ",
"", "",
"(Press ESC to close)", "(Press ESC to close)",
} )
return lipgloss.JoinVertical(lipgloss.Left, info...) return lipgloss.JoinVertical(lipgloss.Left, info...)
} }

1
go.mod
View File

@@ -30,6 +30,7 @@ require (
github.com/mattn/go-isatty v0.0.20 // indirect github.com/mattn/go-isatty v0.0.20 // indirect
github.com/mattn/go-localereader v0.0.1 // indirect github.com/mattn/go-localereader v0.0.1 // indirect
github.com/mattn/go-runewidth v0.0.16 // indirect github.com/mattn/go-runewidth v0.0.16 // indirect
github.com/moutend/go-equalizer v0.1.0 // indirect
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 // indirect github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 // indirect
github.com/muesli/cancelreader v0.2.2 // indirect github.com/muesli/cancelreader v0.2.2 // indirect
github.com/muesli/termenv v0.16.0 // indirect github.com/muesli/termenv v0.16.0 // indirect

2
go.sum
View File

@@ -32,6 +32,8 @@ github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2J
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88= github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
github.com/mattn/go-runewidth v0.0.16 h1:E5ScNMtiwvlvB5paMFdw9p4kSQzbXFikJ5SQO6TULQc= github.com/mattn/go-runewidth v0.0.16 h1:E5ScNMtiwvlvB5paMFdw9p4kSQzbXFikJ5SQO6TULQc=
github.com/mattn/go-runewidth v0.0.16/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w= github.com/mattn/go-runewidth v0.0.16/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/moutend/go-equalizer v0.1.0 h1:FDFsTr/zKUpLbNXZQmCMRDgisQhXxFOnX2q0PllJvxs=
github.com/moutend/go-equalizer v0.1.0/go.mod h1:iahcZcStDm66TNtrkMIhrQuhWdiWbFKSVjZ8yn+7Cgw=
github.com/moutend/go-wca v0.3.0 h1:IzhsQ44zBzMdT42xlBjiLSVya9cPYOoKx9E+yXVhFo8= github.com/moutend/go-wca v0.3.0 h1:IzhsQ44zBzMdT42xlBjiLSVya9cPYOoKx9E+yXVhFo8=
github.com/moutend/go-wca v0.3.0/go.mod h1:7VrPO512jnjFGJ6rr+zOoCfiYjOHRPNfbttJuxAurcw= github.com/moutend/go-wca v0.3.0/go.mod h1:7VrPO512jnjFGJ6rr+zOoCfiYjOHRPNfbttJuxAurcw=
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 h1:ZK8zHtRHOkbHy6Mmr5D264iyp3TiX5OmNcI5cIARiQI= github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 h1:ZK8zHtRHOkbHy6Mmr5D264iyp3TiX5OmNcI5cIARiQI=

135
pkg/audio/biquad.go Normal file
View File

@@ -0,0 +1,135 @@
package audio
import (
"github.com/moutend/go-equalizer/pkg/equalizer"
)
// EQChain manages a cascade of filters using go-equalizer library
// Now supports Stereo processing (Left/Right)
// EQChain manages a cascade of filters using go-equalizer library
// Now supports Stereo processing (Left/Right)
type EQChain struct {
FiltersLeft []*equalizer.Filter
FiltersRight []*equalizer.Filter
buffer []float64 // Reusable scratch buffer for processing
currentGains []float64 // Cache of current gain values
}
// NewEQChain creates the standard 5-band EQ chain (Stereo)
func NewEQChain(sampleRate float64) *EQChain {
// Standard bands: 100, 350, 1000, 3000, 8000
// Width = 1.0 (approx 1 octave)
createChain := func() []*equalizer.Filter {
f1 := equalizer.NewPeaking(sampleRate, 100, 1.0, 0)
f2 := equalizer.NewPeaking(sampleRate, 350, 1.0, 0)
f3 := equalizer.NewPeaking(sampleRate, 1000, 1.0, 0)
f4 := equalizer.NewPeaking(sampleRate, 3000, 1.0, 0)
f5 := equalizer.NewPeaking(sampleRate, 8000, 1.0, 0)
return []*equalizer.Filter{f1, f2, f3, f4, f5}
}
return &EQChain{
FiltersLeft: createChain(),
FiltersRight: createChain(),
buffer: make([]float64, 1920), // Pre-allocate for Stereo 20ms frame (960*2)
currentGains: make([]float64, 5), // Initialize cache with 0.0
}
}
// SetGain sets the gain for a specific band index (0-4)
func (e *EQChain) SetGain(bandIdx int, dbGain float64) {
if bandIdx < 0 || bandIdx >= 5 {
return
}
// Optimization: If gain hasn't changed, DO NOT recreate filter.
// Recreating the filter resets its internal history state (bi-quad delay buffers),
// causing audible clicks/pops (discontinuities) at every 20ms frame boundary.
const epsilon = 0.001
if delta := dbGain - e.currentGains[bandIdx]; delta > -epsilon && delta < epsilon {
return
}
rate := 48000.0 // Assuming fixed rate for now
// Frequencies map to our standard bands
freqs := []float64{100, 350, 1000, 3000, 8000}
// Create new filter with updated gain
// We use width=1.0 consistent with constructor
// Update BOTH Left and Right to keep balance
e.FiltersLeft[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
e.FiltersRight[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
// Update cache
e.currentGains[bandIdx] = dbGain
}
// Reset clears history of all filters
func (e *EQChain) Reset() {
// The library does not expose a Reset method.
}
// Process processes a slice of samples (Interleaved Stereo)
func (e *EQChain) Process(samples []int16) []int16 {
// Grow buffer if needed
if cap(e.buffer) < len(samples) {
e.buffer = make([]float64, len(samples))
}
e.buffer = e.buffer[:len(samples)]
// Float conversion with normalization (-1.0 to 1.0)
// We also apply a slight pre-attenuation (Headroom) to avoid clipping when boosting EQ.
// -3dB = 0.707
const headroom = 0.707
const norm = 1.0 / 32768.0
for i, s := range samples {
e.buffer[i] = float64(s) * norm * headroom
}
// Filter processing
// Input is assumed to be Interleaved Stereo: L, R, L, R...
// We iterate by 2 to process pairs.
for i := 0; i < len(e.buffer); i += 2 {
if i+1 >= len(e.buffer) {
break
}
valL := e.buffer[i]
valR := e.buffer[i+1]
// Run through LEFT chain
for _, f := range e.FiltersLeft {
valL = f.Apply(valL)
}
// Run through RIGHT chain
for _, f := range e.FiltersRight {
valR = f.Apply(valR)
}
// Write back to buffer
e.buffer[i] = valL
e.buffer[i+1] = valR
}
// Convert back to int16
for i, val := range e.buffer {
// Denormalize
val = val * 32767.0
// Hard clipping
if val > 32767 {
val = 32767
} else if val < -32768 {
val = -32768
}
// Write back directly to samples
samples[i] = int16(val)
}
return samples
}

View File

@@ -10,4 +10,6 @@ const (
type UserSettings struct { type UserSettings struct {
Volume float32 // 0.0 - 1.0 (or higher for boost) Volume float32 // 0.0 - 1.0 (or higher for boost)
Muted bool Muted bool
Gains []float64 // 5-band Equalizer Gains in dB
EQBands []float64
} }

138
pkg/audio/fft.go Normal file
View File

@@ -0,0 +1,138 @@
package audio
import (
"math"
)
// CalculateEQBands computes frequency magnitudes for 5 EQ bands from PCM samples.
// It uses a simplified approach tailored for visualization:
// 1. Converts int16 PCM to float64
// 2. Applies a Window function (Hanning)
// 3. Performs a simple DFT (Discrete Fourier Transform) - sufficient for small N/visualization
// 4. Aggregates bins into 5 bands: Bass, Low-Mid, Mid, Hybrid-High, High
func CalculateEQBands(samples []int16, sampleRate int) []float64 {
// We'll use a relatively small window size for responsiveness and performance
// 512 samples at 48kHz is ~10ms, which is very fast.
// 1024 samples is ~21ms.
const windowSize = 1024
if len(samples) < windowSize {
// Not enough data, return empty or zeroed bands
// Pad with zeros if we really wanted to processing, but for vis just return what we have?
// Actually, let's just make a copy and pad with zeros to windowSize
padded := make([]int16, windowSize)
copy(padded, samples)
samples = padded
} else {
// Take the last windowSize samples (most recent audio)
samples = samples[len(samples)-windowSize:]
}
// Prepare complex input
real := make([]float64, windowSize)
imag := make([]float64, windowSize)
// Apply Hanning Window
for i := 0; i < windowSize; i++ {
val := float64(samples[i]) / 32768.0 // Normalize to -1.0..1.0
// Hanning window formula
window := 0.5 * (1 - math.Cos(2*math.Pi*float64(i)/float64(windowSize-1)))
real[i] = val * window
}
// Perform basic FFT (Cooley-Tukey)
// Since windowSize is power of 2 (1024), we can use a recursive or iterative FFT.
// For simplicity in a single file without deps, we'll write a small recursive one or iterative.
// Given typical Go performance, a simple recursive one is fine for N=1024 per user talk event.
fft(real, imag)
// Calculate magnitudes and bucket into bands
// Freq resolution = SampleRate / WindowSize = 48000 / 1024 ~= 46.875 Hz per bin
// Nyquist = 24000 Hz (Bin 512)
// Band definitions (approximate range):
// 1. Sub/Bass: 0 - 250 Hz (Bins 0-5)
// 2. Low Mids: 250 - 500 Hz (Bins 6-10)
// 3. Mids: 500 - 2000 Hz (Bins 11-42)
// 4. Upper Mids: 2000 - 4000 Hz (Bins 43-85)
// 5. Highs: 4000Hz+ (Bins 86-512)
bands := make([]float64, 5)
// Helper to collect energy
collectEnergy := func(startBin, endBin int) float64 {
sum := 0.0
for i := startBin; i <= endBin && i < windowSize/2; i++ {
// Magnitude = sqrt(re^2 + im^2)
mag := math.Sqrt(real[i]*real[i] + imag[i]*imag[i])
sum += mag
}
// Average
count := float64(endBin - startBin + 1)
if count > 0 {
return sum / count
}
return 0
}
bands[0] = collectEnergy(1, 6) // Skip DC (bin 0)
bands[1] = collectEnergy(7, 12)
bands[2] = collectEnergy(13, 45)
bands[3] = collectEnergy(46, 90)
bands[4] = collectEnergy(91, 511)
// Normalize output for visualization (0.0 to 1.0)
// We need some scaling factor. Based on expected signals.
const scale = 10.0 // Reduced from 50.0 to fix saturation
for i := range bands {
bands[i] = bands[i] * scale
if bands[i] > 1.0 {
bands[i] = 1.0
}
}
return bands
}
// Simple in-place Cooley-Tukey FFT.
// n must be power of 2.
func fft(real, imag []float64) {
n := len(real)
if n <= 1 {
return
}
// Split even and odd
half := n / 2
realEven := make([]float64, half)
imagEven := make([]float64, half)
realOdd := make([]float64, half)
imagOdd := make([]float64, half)
for i := 0; i < half; i++ {
realEven[i] = real[2*i]
imagEven[i] = imag[2*i]
realOdd[i] = real[2*i+1]
imagOdd[i] = imag[2*i+1]
}
// Recursion
fft(realEven, imagEven)
fft(realOdd, imagOdd)
// Combine
for k := 0; k < half; k++ {
tReal := math.Cos(-2 * math.Pi * float64(k) / float64(n))
tImag := math.Sin(-2 * math.Pi * float64(k) / float64(n))
// Multiply odd by twist factor (tReal+itImag) * (oddReal+iOddImag)
// (ac - bd) + i(ad + bc)
twistReal := tReal*realOdd[k] - tImag*imagOdd[k]
twistImag := tReal*imagOdd[k] + tImag*realOdd[k]
real[k] = realEven[k] + twistReal
imag[k] = imagEven[k] + twistImag
real[k+half] = realEven[k] - twistReal
imag[k+half] = imagEven[k] - twistImag
}
}

View File

@@ -30,6 +30,9 @@ type Player struct {
// map[SenderID] -> AudioQueue // map[SenderID] -> AudioQueue
userBuffers map[uint16][]int16 userBuffers map[uint16][]int16
// User EQs (DSP Filters)
userEQs map[uint16]*EQChain
// User settings // User settings
userSettings map[uint16]*UserSettings userSettings map[uint16]*UserSettings
bufferMu sync.Mutex bufferMu sync.Mutex
@@ -66,11 +69,11 @@ func NewPlayer() (*Player, error) {
waveFormat := &wca.WAVEFORMATEX{ waveFormat := &wca.WAVEFORMATEX{
WFormatTag: wca.WAVE_FORMAT_PCM, WFormatTag: wca.WAVE_FORMAT_PCM,
NChannels: 1, NChannels: 2, // STEREO
NSamplesPerSec: 48000, NSamplesPerSec: 48000,
WBitsPerSample: 16, WBitsPerSample: 16,
NBlockAlign: 2, NBlockAlign: 4, // 16bit * 2 channels / 8 = 4 bytes
NAvgBytesPerSec: 96000, NAvgBytesPerSec: 192000, // 48000 * 4
CbSize: 0, CbSize: 0,
} }
@@ -108,6 +111,7 @@ func NewPlayer() (*Player, error) {
muted: false, muted: false,
stopChan: make(chan struct{}), stopChan: make(chan struct{}),
userBuffers: make(map[uint16][]int16), userBuffers: make(map[uint16][]int16),
userEQs: make(map[uint16]*EQChain),
userSettings: make(map[uint16]*UserSettings), userSettings: make(map[uint16]*UserSettings),
}, nil }, nil
} }
@@ -163,22 +167,112 @@ func (p *Player) PlayPCM(senderID uint16, samples []int16) {
return return
} }
// ---------------------------------------------------------
// PHASE 1: Read Configuration (Safe Copy)
// ---------------------------------------------------------
p.bufferMu.Lock() p.bufferMu.Lock()
defer p.bufferMu.Unlock()
// Check per-user mute // Check per-user mute
if settings, ok := p.userSettings[senderID]; ok && settings.Muted { settings, hasSettings := p.userSettings[senderID]
if hasSettings && settings.Muted {
p.bufferMu.Unlock()
return return
} }
// Append to user's specific buffer // Get EQ Instance (Create if needed)
// This ensures sequential playback for the same user if _, ok := p.userEQs[senderID]; !ok {
p.userBuffers[senderID] = append(p.userBuffers[senderID], samples...) p.userEQs[senderID] = NewEQChain(48000)
}
userEQ := p.userEQs[senderID]
// Limit buffer size per user to avoid memory leaks if stalled // Check/Copy Gains
if len(p.userBuffers[senderID]) > 48000*2 { // 2 seconds max var gains []float64
hasActiveEQ := false
if hasSettings && len(settings.Gains) == 5 {
// Copy gains to avoid race if UI changes them while we process
gains = make([]float64, 5)
copy(gains, settings.Gains)
for _, g := range gains {
if g != 0 {
hasActiveEQ = true
break
}
}
}
p.bufferMu.Unlock()
// ---------------------------------------------------------
// END PHASE 1 (Lock Released)
// ---------------------------------------------------------
// ---------------------------------------------------------
// PHASE 2: Heavy Processing (Concurrent)
// ---------------------------------------------------------
// Normalize to Stereo (Interleaved)
// If input is Mono (960 samples), expand to Stereo (1920 samples)
// If input is already Stereo, using it as is.
var stereoSamples []int16
if len(samples) < 1500 { // Heuristic for Mono (960)
stereoSamples = make([]int16, len(samples)*2)
for i, s := range samples {
stereoSamples[i*2] = s
stereoSamples[i*2+1] = s
}
} else {
// Already stereo (assumed)
stereoSamples = make([]int16, len(samples))
copy(stereoSamples, samples)
}
// Apply EQ Filters if needed
if hasActiveEQ {
// Update gains on the private EQ instance (Thread-safe per user)
for i, g := range gains {
userEQ.SetGain(i, g)
}
// Process Stereo
stereoSamples = userEQ.Process(stereoSamples)
}
// Calculate EQ bands for visualization
// Downmix to Mono for FFT visualization to save CPU and complexity
vizSamples := make([]int16, len(stereoSamples)/2)
for i := 0; i < len(vizSamples); i++ {
// Average L+R
val := (int32(stereoSamples[i*2]) + int32(stereoSamples[i*2+1])) / 2
vizSamples[i] = int16(val)
}
bands := CalculateEQBands(vizSamples, 48000)
// ---------------------------------------------------------
// PHASE 3: Write Output (Lock Acquired)
// ---------------------------------------------------------
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
// Re-check existence (could have disconnected?)
// Update user settings with new bands
if _, ok := p.userSettings[senderID]; !ok {
p.userSettings[senderID] = &UserSettings{Volume: 1.0, Muted: false}
}
p.userSettings[senderID].EQBands = bands
// Append to user's specific buffer
p.userBuffers[senderID] = append(p.userBuffers[senderID], stereoSamples...)
// Limit buffer size per user (Stereo 2sec = 48000*2*2 = 192000 items)
// frameSamples is 960 (20ms). 2sec = 100 frames * 960 * 2 = 192000
const maxBufferSize = 48000 * 2 * 2 // 2 seconds stereo
if len(p.userBuffers[senderID]) > maxBufferSize {
// Drop oldest // Drop oldest
drop := len(p.userBuffers[senderID]) - 48000 drop := len(p.userBuffers[senderID]) - maxBufferSize
// Ensure we drop aligned to stereo frame (even number)
if drop%2 != 0 {
drop++
}
p.userBuffers[senderID] = p.userBuffers[senderID][drop:] p.userBuffers[senderID] = p.userBuffers[senderID][drop:]
} }
} }
@@ -249,6 +343,66 @@ func (p *Player) GetUserSettings(clientID uint16) (float32, bool) {
return 1.0, false return 1.0, false
} }
// GetEQBands returns the current 5-band EQ values for a user (0.0-1.0)
func (p *Player) GetEQBands(clientID uint16) []float64 {
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
if settings, ok := p.userSettings[clientID]; ok {
return settings.EQBands
}
return nil
}
// SetUserGain sets the EQ gain for a specific band (0-4) and user.
// Gain is in dB (e.g. -12.0 to +12.0)
func (p *Player) SetUserGain(clientID uint16, bandIdx int, gainDb float64) {
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
p.ensureUserSettings(clientID)
// Ensure Gains slice exists
if len(p.userSettings[clientID].Gains) != 5 {
p.userSettings[clientID].Gains = make([]float64, 5)
}
if bandIdx >= 0 && bandIdx < 5 {
p.userSettings[clientID].Gains[bandIdx] = gainDb
}
}
// GetUserGain returns the gain for a band
func (p *Player) GetUserGain(clientID uint16, bandIdx int) float64 {
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
if settings, ok := p.userSettings[clientID]; ok {
if len(settings.Gains) > bandIdx {
return settings.Gains[bandIdx]
}
}
return 0.0
}
func (p *Player) ensureUserSettings(clientID uint16) {
if _, ok := p.userSettings[clientID]; !ok {
p.userSettings[clientID] = &UserSettings{
Volume: 1.0,
Muted: false,
Gains: make([]float64, 5),
}
}
}
func (p *Player) ensureEQ(clientID uint16) {
if _, ok := p.userEQs[clientID]; !ok {
// New EQ chain
// Assume 48000 Hz, would be better to pass actual stream rate
p.userEQs[clientID] = NewEQChain(48000)
}
}
func (p *Player) playbackLoop() { func (p *Player) playbackLoop() {
ticker := time.NewTicker(10 * time.Millisecond) ticker := time.NewTicker(10 * time.Millisecond)
defer ticker.Stop() defer ticker.Stop()
@@ -278,7 +432,8 @@ func (p *Player) writeFrame() {
p.bufferMu.Lock() p.bufferMu.Lock()
// Mix audio from all active user buffers // Mix audio from all active user buffers
mixed := make([]int32, frameSamples) // Stereo mixing: buffer size is frameSamples * 2
mixed := make([]int32, frameSamples*2)
activeUsers := 0 activeUsers := 0
hasAnyAudio := false hasAnyAudio := false
@@ -286,12 +441,15 @@ func (p *Player) writeFrame() {
if len(buf) > 0 { if len(buf) > 0 {
hasAnyAudio = true hasAnyAudio = true
activeUsers++ activeUsers++
// Take up to frameSamples from this user // Take up to frameSamples*2 (Stereo) from this user
toTake := frameSamples toTake := frameSamples * 2
if len(buf) < frameSamples { if len(buf) < int(frameSamples)*2 {
toTake = len(buf) toTake = len(buf)
} }
// Ensure we take pairs (alignment)
toTake = toTake &^ 1 // clear lowest bit
for i := 0; i < toTake; i++ { for i := 0; i < toTake; i++ {
sample := int32(buf[i]) sample := int32(buf[i])
@@ -304,10 +462,10 @@ func (p *Player) writeFrame() {
} }
// Advance buffer // Advance buffer
if len(buf) <= frameSamples { if len(buf) <= toTake {
delete(p.userBuffers, id) delete(p.userBuffers, id) // Finished this buffer
} else { } else {
p.userBuffers[id] = buf[frameSamples:] p.userBuffers[id] = buf[toTake:]
} }
} }
} }
@@ -330,8 +488,19 @@ func (p *Player) writeFrame() {
p.mu.Unlock() p.mu.Unlock()
// Write mixed samples with clipping protection and volume application // Write mixed samples with clipping protection and volume application
bufSlice := unsafe.Slice(buffer, int(frameSamples)*2) // Output buffer is for Stereo (frameSamples * 2 channels)
for i := 0; i < int(frameSamples); i++ { bufSlice := unsafe.Slice(buffer, int(frameSamples)*2*2) // *2 channels *2 bytes? No, unsafe.Slice takes count of Type.
// If buffer is *byte, we need bytes. frameSamples * 2 channels * 2 bytes/sample.
// Wait, GetBuffer returns BYTE pointer.
// Let's use uint16 slice.
// The logic below was: binary.LittleEndian.PutUint16(bufSlice[i*2:], ...)
// frameSamples was 960. loop 0..960.
// Now we have Stereo mixed buffer. Length = frameSamples * 2.
// We need to write frameSamples * 2 samples.
// Correct loop for Stereo:
for i := 0; i < int(frameSamples)*2; i++ { // Iterate over all samples (L, R, L, R...)
val := mixed[i] val := mixed[i]
// Apply master volume // Apply master volume
@@ -343,6 +512,10 @@ func (p *Player) writeFrame() {
} else if val < -32768 { } else if val < -32768 {
val = -32768 val = -32768
} }
// Map to output byte buffer
// i is sample index. Each sample is 2 bytes.
// Offset = i * 2.
binary.LittleEndian.PutUint16(bufSlice[i*2:], uint16(val)) binary.LittleEndian.PutUint16(bufSlice[i*2:], uint16(val))
} }