9 Commits

Author SHA1 Message Date
Jose Luis Montañes Ojados
be929ce55a feat(audio): optimize equalizer with stereo support and gain caching
Some checks failed
Build and Release / build-linux (push) Failing after 33s
Build and Release / build-windows (push) Failing after 4m2s
Build and Release / release (push) Has been skipped
2026-01-17 20:49:16 +01:00
Jose Luis Montañes Ojados
711eb148df feat(tui): add interactive 5-band per-user equalizer 2026-01-17 20:25:58 +01:00
Jose Luis Montañes Ojados
0010bc6cf7 Fix bug where disabling PTT would incorrectly stop VAD capture
All checks were successful
Build and Release / build-linux (push) Successful in 32s
Build and Release / build-windows (push) Successful in 2m20s
Build and Release / release (push) Successful in 9s
2026-01-17 17:10:21 +01:00
Jose Luis Montañes Ojados
a14d068ada Update TUI footer legend with VAD controls 2026-01-17 17:08:25 +01:00
Jose Luis Montañes Ojados
b66e0737d0 Fix deadlock on exit by making mic level updates async 2026-01-17 17:06:46 +01:00
Jose Luis Montañes Ojados
2860102627 Fix mic bar background continuity in status bar 2026-01-17 17:02:18 +01:00
Jose Luis Montañes Ojados
ebe2b26ae9 Improve microphone level sensitivity using logarithmic (dB) scaling 2026-01-17 16:41:17 +01:00
Jose Luis Montañes Ojados
356b492629 Fix Poke timeout, input CommandLow handling, and add Poke Popup
All checks were successful
Build and Release / build-linux (push) Successful in 35s
Build and Release / build-windows (push) Successful in 2m35s
Build and Release / release (push) Has been skipped
2026-01-17 15:57:34 +01:00
Jose Luis Montañes Ojados
99f26c4485 fix: restore author credits in about view 2026-01-17 03:27:18 +01:00
13 changed files with 941 additions and 91 deletions

View File

@@ -97,12 +97,20 @@ type Model struct {
talkingClients map[uint16]bool // ClientID -> isTalking
// Audio state
audioPlayer *audio.Player
audioCapturer *audio.Capturer
playbackVol int // 0-100
micLevel int // 0-100 (current input level)
isMuted bool // Mic muted
isPTT bool // Push-to-talk active
audioPlayer *audio.Player
audioCapturer *audio.Capturer
playbackVol int // 0-100
micLevel int // 0-100 (current input level)
isMuted bool // Mic muted
isPTT bool // Push-to-talk active (Manual TX)
vadEnabled bool // Voice Activation Detection active
vadThreshold int // 0-100 threshold for VAD
vadLastTriggered time.Time // Last time VAD threshold was exceeded
// Popup State
showPokePopup bool
pokePopupSender string
pokePopupMessage string
// Program reference for sending messages from event handlers
program *tea.Program
@@ -112,6 +120,9 @@ type Model struct {
showUserView bool
viewUser *UserNode
pokeID uint16 // Target ID for pending poke
// Interactive EQ
eqBandIdx int // 0-4
}
// addLog adds a message to the log panel
@@ -135,6 +146,8 @@ func NewModel(serverAddr, nickname string) *Model {
logMessages: []string{"Starting..."},
talkingClients: make(map[uint16]bool),
playbackVol: 80, // Default 80% volume
vadEnabled: true,
vadThreshold: 50,
}
}
@@ -294,16 +307,53 @@ func (m *Model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {
} else {
m.audioCapturer = capturer
// Set callback to send audio to server when PTT is active
// Set callback to send audio to server when PTT is active
m.audioCapturer.SetCallback(func(samples []int16) {
if m.isPTT && m.client != nil && !m.isMuted {
// Calculate level of this frame for VAD decision
// Note: GetLevel() is smoothed, we might want instant frame level for VAD trigger?
// But pkg/audio/level.go is efficient. Let's re-calculate for precision.
level := audio.CalculateRMSLevel(samples)
// Determine if we should transmit
shouldTransmit := false
// Manual PTT (Locked on with 'v')
if m.isPTT {
shouldTransmit = true
}
// VAD Logic
if m.vadEnabled && !m.isMuted {
if level > m.vadThreshold {
shouldTransmit = true
m.vadLastTriggered = time.Now()
} else if !m.vadLastTriggered.IsZero() && time.Since(m.vadLastTriggered) < 1*time.Second {
// Hold VAD open for 1 second (decay)
shouldTransmit = true
}
}
// Allow transmission if forced or VAD triggered
if shouldTransmit && m.client != nil && !m.isMuted {
m.client.SendAudio(samples)
}
// Update mic level for display
// Update mic level for display (use the calculated level)
if m.program != nil {
m.program.Send(micLevelMsg(m.audioCapturer.GetLevel()))
// Use goroutine to prevent blocking the capture loop if the UI is busy (e.g. shutting down)
go m.program.Send(micLevelMsg(level))
}
})
m.addLog("Audio capturer initialized")
// Start capture immediately if VAD is enabled or PTT is active
if m.vadEnabled || m.isPTT {
if err := m.audioCapturer.Start(); err != nil {
m.addLog("Error starting audio capture: %v", err)
} else {
m.addLog("Audio capture started (VAD/PTT active)")
}
}
}
// Connect asynchronously
@@ -343,16 +393,7 @@ func (m *Model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {
}
}
// Update mic level when PTT is active (multiply for better visibility)
if m.isPTT && m.audioCapturer != nil {
level := m.audioCapturer.GetLevel() * 4 // Boost for visibility
if level > 100 {
level = 100
}
m.micLevel = level
} else {
m.micLevel = 0 // Reset when not transmitting
}
// Legacy mic level handling removed to support VAD event-driven updates
// Continue ticking (100ms for responsive mic level)
return m, tea.Tick(100*time.Millisecond, func(t time.Time) tea.Msg {
@@ -398,12 +439,19 @@ func (m *Model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {
return m, nil
case pokeMsg:
// Append to chat as well
m.chatMessages = append(m.chatMessages, ChatMessage{
Time: time.Now(),
Sender: "POKE",
Content: fmt.Sprintf("[%s]: %s", msg.senderName, msg.message),
})
m.addLog("Received poke from %s: %s", msg.senderName, msg.message)
// Trigger Popup
m.showPokePopup = true
m.pokePopupSender = msg.senderName
m.pokePopupMessage = msg.message
return m, nil
case chatMsg:
@@ -545,8 +593,18 @@ func (m *Model) updateChannelList(channels []*ts3client.Channel) {
}
func (m *Model) handleKeyPress(msg tea.KeyMsg) (tea.Model, tea.Cmd) {
key := msg.String()
// Global Key Handling for Popup
if m.showPokePopup {
if key == "esc" || key == "enter" || key == "q" {
m.showPokePopup = false
}
return m, nil
}
// 1. Absolute Globals (Always active)
switch msg.String() {
switch key {
case "ctrl+c":
if m.client != nil {
m.client.Disconnect()
@@ -627,16 +685,58 @@ func (m *Model) handleKeyPress(msg tea.KeyMsg) (tea.Model, tea.Cmd) {
}
return m, nil
case "ctrl+up", "ctrl+right":
// Increase VAD threshold
m.vadThreshold += 5
if m.vadThreshold > 100 {
m.vadThreshold = 100
}
m.addLog("VAD Threshold: %d", m.vadThreshold)
return m, nil
case "ctrl+down", "ctrl+left":
// Decrease VAD threshold
m.vadThreshold -= 5
if m.vadThreshold < 0 {
m.vadThreshold = 0
}
m.addLog("VAD Threshold: %d", m.vadThreshold)
return m, nil
case "g", "G":
// Toggle VAD (Gate)
m.vadEnabled = !m.vadEnabled
state := "OFF"
if m.vadEnabled {
state = "ON"
// Ensure capturer is running if VAD is on
if m.audioCapturer != nil && !m.audioCapturer.IsRunning() {
if err := m.audioCapturer.Start(); err != nil {
m.addLog("Error starting VAD capture: %v", err)
}
}
} else {
// Stop if PTT is also off
if !m.isPTT && m.audioCapturer != nil && m.audioCapturer.IsRunning() {
m.audioCapturer.Stop()
}
}
m.addLog("Voice Activation (Gate): %s", state)
return m, nil
case "v", "V":
// Toggle voice (PTT)
m.isPTT = !m.isPTT
if m.isPTT {
if m.audioCapturer != nil {
m.audioCapturer.Start()
if m.audioCapturer != nil && !m.audioCapturer.IsRunning() {
if err := m.audioCapturer.Start(); err != nil {
m.addLog("Audio capture error: %v", err)
}
}
m.addLog("🎤 Transmitting...")
} else {
if m.audioCapturer != nil {
// Stop only if VAD is also off
if !m.vadEnabled && m.audioCapturer != nil && m.audioCapturer.IsRunning() {
m.audioCapturer.Stop()
}
m.addLog("🎤 Stopped transmitting")
@@ -723,6 +823,28 @@ func (m *Model) handleUserViewKeys(msg tea.KeyMsg) (tea.Model, tea.Cmd) {
newVol = 0.0
}
m.audioPlayer.SetUserVolume(u.ID, newVol)
case "right", "l":
// Increase Gain for selected band
current := m.audioPlayer.GetUserGain(u.ID, m.eqBandIdx)
m.audioPlayer.SetUserGain(u.ID, m.eqBandIdx, current+1.0)
case "left", "h":
// Decrease Gain
current := m.audioPlayer.GetUserGain(u.ID, m.eqBandIdx)
m.audioPlayer.SetUserGain(u.ID, m.eqBandIdx, current-1.0)
case "up", "k":
m.eqBandIdx--
if m.eqBandIdx < 0 {
m.eqBandIdx = 4
}
case "down", "j":
m.eqBandIdx++
if m.eqBandIdx > 4 {
m.eqBandIdx = 0
}
}
return m, nil
}
@@ -836,6 +958,32 @@ func (m *Model) handleInputKeys(msg tea.KeyMsg) (tea.Model, tea.Cmd) {
// View renders the UI
func (m *Model) View() string {
if m.showPokePopup {
boxStyle := lipgloss.NewStyle().
Border(lipgloss.DoubleBorder()).
BorderForeground(lipgloss.Color("196")). // Red for Poke
Padding(1, 2).
Width(50).
Align(lipgloss.Center)
titleStyle := lipgloss.NewStyle().Bold(true).Foreground(lipgloss.Color("226")).MarginBottom(1)
senderStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("208")).Bold(true)
msgStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("255")).Italic(true)
helpStyle := lipgloss.NewStyle().Faint(true).MarginTop(2)
content := lipgloss.JoinVertical(lipgloss.Center,
titleStyle.Render("YOU WERE POKED!"),
"",
fmt.Sprintf("From: %s", senderStyle.Render(m.pokePopupSender)),
"",
msgStyle.Render(fmt.Sprintf("%q", m.pokePopupMessage)),
"",
helpStyle.Render("(Press Esc/Enter to close)"),
)
return lipgloss.Place(m.width, m.height, lipgloss.Center, lipgloss.Center, boxStyle.Render(content))
}
if m.focus == FocusAbout {
return m.renderAboutView()
}
@@ -962,7 +1110,7 @@ func (m *Model) View() string {
if m.showLog {
logHelp = "L chat"
}
help := lipgloss.NewStyle().Faint(true).Render(fmt.Sprintf("↑↓ navigate │ Enter join │ Tab switch │ %s │ V talk │ M mute │ +/- vol │ q quit", logHelp))
help := lipgloss.NewStyle().Faint(true).Render(fmt.Sprintf("↑↓ nav │ Ent join │ Tab switch │ %s │ V PTT │ G VAD │ ^↕↔ thresh │ M mute │ +/- vol │ q quit", logHelp))
// Combine panels
panels := lipgloss.JoinHorizontal(lipgloss.Top, channelPanel, rightPanel)
@@ -1005,12 +1153,85 @@ func (m *Model) renderStatusBar() string {
}
volPart := fmt.Sprintf("%s:%s%d%%", muteIcon, volBar, m.playbackVol)
micBar := audio.LevelToBar(m.micLevel, 6)
pttIcon := "MIC"
if m.isPTT {
pttIcon = "*TX*"
// Custom Mic Bar with VAD Threshold
micBarWidth := 8
var micBar string
if m.vadEnabled {
// Calculate threshold position
threshPos := m.vadThreshold * micBarWidth / 100
if threshPos >= micBarWidth {
threshPos = micBarWidth - 1
}
// Calculate filled position based on current level
filled := m.micLevel * micBarWidth / 100
// Build bar
var sb strings.Builder
for i := 0; i < micBarWidth; i++ {
char := "░"
if i < filled {
char = "█"
}
// Overlay threshold marker
if i == threshPos {
if i < filled {
// Threshold is met
char = "▓"
} else {
// Threshold not met
char = "│"
}
}
sb.WriteString(char)
}
micBar = sb.String()
} else {
micBar = audio.LevelToBar(m.micLevel, micBarWidth)
}
micPart := fmt.Sprintf("%s:%s", pttIcon, micBar)
pttStyle := lipgloss.NewStyle()
pttIcon := "MIC"
if m.isPTT {
pttIcon = " ON" // Manual ON
pttStyle = pttStyle.Foreground(lipgloss.Color("196")).Bold(true) // Red
} else if m.vadEnabled {
pttIcon = "VAD"
// Check if actively transmitting (using logic with decay)
isTransmitting := false
if !m.isMuted {
if m.micLevel > m.vadThreshold {
isTransmitting = true
} else if !m.vadLastTriggered.IsZero() && time.Since(m.vadLastTriggered) < 1*time.Second {
isTransmitting = true
}
}
if isTransmitting {
// Transmitting via VAD: Red/Bold
pttStyle = pttStyle.Foreground(lipgloss.Color("196")).Bold(true)
} else {
// Idle VAD: Gray/Faint
pttStyle = pttStyle.Foreground(lipgloss.Color("240")).Faint(true)
}
} else {
// Standard Mic (PTT mode but off)
pttStyle = pttStyle.Foreground(lipgloss.Color("255")) // White
}
// Apply status bar background color to prevent cutting
pttStyle = pttStyle.Background(lipgloss.Color("57")) // Matches Top Bar Background
// Style for the bar itself to maintain background continuity
barStyle := lipgloss.NewStyle().Background(lipgloss.Color("57")).Foreground(lipgloss.Color("255"))
micPart := fmt.Sprintf("%s%s%s",
pttStyle.Render(pttIcon),
barStyle.Render(":"),
barStyle.Render(micBar))
rightPart := fmt.Sprintf("%s | %s ", volPart, micPart)
@@ -1216,14 +1437,85 @@ func (m *Model) renderUserView() string {
"--- Audio Settings ---",
fmt.Sprintf("%s %d%%", labelStyle.Render("Volume:"), int(vol*100)),
fmt.Sprintf("%s %s", labelStyle.Render("Local Mute:"), muteStr),
}
// EQ Visualization
var eqGraph []string
if m.audioPlayer != nil {
bands := m.audioPlayer.GetEQBands(u.ID)
if len(bands) > 0 {
eqGraph = append(eqGraph, "", "--- Interactive Equalizer ---", "")
// Render bars for 5 bands
// 0: Bass, 1: Low-Mid, 2: Mid, 3: High-Mid, 4: High
labels := []string{"100Hz", "350Hz", "1kHz", "3kHz", "8kHz"}
for i, val := range bands {
if i >= len(labels) {
break
}
// Get current gain setting
gain := m.audioPlayer.GetUserGain(u.ID, i)
// Scale 0.0-1.0 to bars (width 20)
const maxBars = 20
bars := int(val * maxBars)
if bars > maxBars {
bars = maxBars
}
// Bar characters: █ ▇ ▆ ▅ ▄ ▃ ▂
barStr := ""
if bars > 0 {
barStr = strings.Repeat("█", bars)
}
// Colorize based on intensity
barStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("39")) // Blue default
if val > 0.8 {
barStyle = barStyle.Foreground(lipgloss.Color("196")) // Red clipping
} else if val > 0.5 {
barStyle = barStyle.Foreground(lipgloss.Color("208")) // Orange high
} else if val > 0.2 {
barStyle = barStyle.Foreground(lipgloss.Color("46")) // Green normal
}
// Selection Indicator
selector := " "
labelStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("240")).Width(6)
gainStyle := lipgloss.NewStyle().Foreground(lipgloss.Color("245")).Width(6)
if i == m.eqBandIdx {
selector = "->"
labelStyle = labelStyle.Foreground(lipgloss.Color("226")).Bold(true) // Yellow for selected
gainStyle = gainStyle.Foreground(lipgloss.Color("226"))
}
gainStr := fmt.Sprintf("%+3.0fdB", gain)
line := fmt.Sprintf("%s %s %s | %s",
selector,
labelStyle.Render(labels[i]),
gainStyle.Render(gainStr),
barStyle.Render(fmt.Sprintf("%-20s", barStr)))
eqGraph = append(eqGraph, line)
}
}
}
info = append(info, eqGraph...)
info = append(info,
"",
"--- Menu ---",
"1. Poke",
"2. Toggle Local Mute",
"+/-: Adjust Volume",
"Arrows: Adjust EQ",
"",
"(Press ESC to close)",
}
)
return lipgloss.JoinVertical(lipgloss.Left, info...)
}
@@ -1246,7 +1538,8 @@ func (m *Model) renderAboutView() string {
titleStyle.Render("TS3 TUI CLIENT"),
lipgloss.NewStyle().Foreground(lipgloss.Color("250")).Render("Una terminal potente para tus comunidades."),
"",
lipgloss.NewStyle().Bold(true).Render("Hecho en Antigravity"),
lipgloss.NewStyle().Bold(true).Render("Realizado por JosLeDeta"),
lipgloss.NewStyle().Italic(true).Faint(true).Render("Hecho en Antigravity"),
"",
lipgloss.NewStyle().Bold(true).Render("Con la ayuda de:"),
lipgloss.NewStyle().Foreground(lipgloss.Color("212")).Render("- Gemini 3 Pro"),

1
go.mod
View File

@@ -30,6 +30,7 @@ require (
github.com/mattn/go-isatty v0.0.20 // indirect
github.com/mattn/go-localereader v0.0.1 // indirect
github.com/mattn/go-runewidth v0.0.16 // indirect
github.com/moutend/go-equalizer v0.1.0 // indirect
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 // indirect
github.com/muesli/cancelreader v0.2.2 // indirect
github.com/muesli/termenv v0.16.0 // indirect

2
go.sum
View File

@@ -32,6 +32,8 @@ github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2J
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
github.com/mattn/go-runewidth v0.0.16 h1:E5ScNMtiwvlvB5paMFdw9p4kSQzbXFikJ5SQO6TULQc=
github.com/mattn/go-runewidth v0.0.16/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/moutend/go-equalizer v0.1.0 h1:FDFsTr/zKUpLbNXZQmCMRDgisQhXxFOnX2q0PllJvxs=
github.com/moutend/go-equalizer v0.1.0/go.mod h1:iahcZcStDm66TNtrkMIhrQuhWdiWbFKSVjZ8yn+7Cgw=
github.com/moutend/go-wca v0.3.0 h1:IzhsQ44zBzMdT42xlBjiLSVya9cPYOoKx9E+yXVhFo8=
github.com/moutend/go-wca v0.3.0/go.mod h1:7VrPO512jnjFGJ6rr+zOoCfiYjOHRPNfbttJuxAurcw=
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 h1:ZK8zHtRHOkbHy6Mmr5D264iyp3TiX5OmNcI5cIARiQI=

View File

@@ -36,6 +36,7 @@ type Client struct {
PingPacketID uint16 // Type 0x04
PongPacketID uint16 // Type 0x05
AckPacketID uint16 // Type 0x06
AckLowPacketID uint16 // Type 0x07
// Ping RTT tracking
PingSentTimes map[uint16]time.Time // Map PingPacketID -> Time sent
@@ -48,10 +49,14 @@ type Client struct {
ServerName string
// Fragment reassembly (packet queue like ts3j)
CommandQueue map[uint16]*protocol.Packet // Packets waiting for reassembly
ExpectedCommandPID uint16 // Next expected packet ID
CommandQueue map[uint16]*protocol.Packet // Packets waiting for reassembly (Type 0x02)
ExpectedCommandPID uint16 // Next expected packet ID (Type 0x02)
FragmentState bool // Toggle: true = collecting, false = ready
CommandLowQueue map[uint16]*protocol.Packet // Packets waiting for reassembly (Type 0x03)
ExpectedCommandLowPID uint16 // Next expected packet ID (Type 0x03)
FragmentStateLow bool // Toggle: true = collecting, false = ready
// Server Data
Channels map[uint64]*Channel
@@ -69,17 +74,20 @@ type Client struct {
func NewClient(nickname string) *Client {
return &Client{
Nickname: nickname,
PacketIDCounterC2S: 1,
VoicePacketID: 1,
Channels: make(map[uint64]*Channel),
VoiceDecoders: make(map[uint16]*opus.Decoder),
CommandQueue: make(map[uint16]*protocol.Packet),
ExpectedCommandPID: 0,
PingSentTimes: make(map[uint16]time.Time),
PingRTT: 0,
PingDeviation: 0,
done: make(chan struct{}),
Nickname: nickname,
PacketIDCounterC2S: 1,
AckLowPacketID: 1,
VoicePacketID: 1,
Channels: make(map[uint64]*Channel),
VoiceDecoders: make(map[uint16]*opus.Decoder),
CommandQueue: make(map[uint16]*protocol.Packet),
ExpectedCommandPID: 0,
CommandLowQueue: make(map[uint16]*protocol.Packet),
ExpectedCommandLowPID: 0,
PingSentTimes: make(map[uint16]time.Time),
PingRTT: 0,
PingDeviation: 0,
done: make(chan struct{}),
}
}

View File

@@ -35,6 +35,21 @@ func sanitizeForLog(s string) string {
}
func (c *Client) handleCommand(pkt *protocol.Packet) error {
// Select the correct queue and counters based on PacketType
var queue map[uint16]*protocol.Packet
var expectedPID *uint16
var fragmentState *bool
if pkt.Header.PacketType() == protocol.PacketTypeCommandLow {
queue = c.CommandLowQueue
expectedPID = &c.ExpectedCommandLowPID
fragmentState = &c.FragmentStateLow
} else {
queue = c.CommandQueue
expectedPID = &c.ExpectedCommandPID
fragmentState = &c.FragmentState
}
// Check if Encrypted
// PacketTypeCommand is usually encrypted.
// Flag check? The flag is in the Header (e.g. Unencrypted flag).
@@ -100,14 +115,14 @@ func (c *Client) handleCommand(pkt *protocol.Packet) error {
// Queue-based fragment reassembly (like ts3j)
// Store packet in queue
c.CommandQueue[pkt.Header.PacketID] = &protocol.Packet{
queue[pkt.Header.PacketID] = &protocol.Packet{
Header: pkt.Header,
Data: append([]byte{}, data...), // Clone data (already decrypted)
}
// Try to process packets in order
for {
nextPkt, ok := c.CommandQueue[c.ExpectedCommandPID]
nextPkt, ok := queue[*expectedPID]
if !ok {
// Missing packet, wait for it
break
@@ -117,16 +132,16 @@ func (c *Client) handleCommand(pkt *protocol.Packet) error {
if isFragmented {
// Toggle fragment state
c.FragmentState = !c.FragmentState
*fragmentState = !*fragmentState
if c.FragmentState {
if *fragmentState {
// Starting a new fragment sequence
// Don't process yet, wait for more
c.ExpectedCommandPID++
*expectedPID++
continue
} else {
// Ending fragment sequence - reassemble all
reassembled, compressed := c.reassembleFragments()
reassembled, compressed := c.reassembleFragmentsCustom(queue, *expectedPID)
if reassembled == nil {
log.Printf("Fragment reassembly failed")
break
@@ -144,9 +159,9 @@ func (c *Client) handleCommand(pkt *protocol.Packet) error {
}
}
}
} else if c.FragmentState {
} else if *fragmentState {
// Middle fragment - keep collecting
c.ExpectedCommandPID++
*expectedPID++
continue
} else {
// Non-fragmented packet - process normally
@@ -165,10 +180,11 @@ func (c *Client) handleCommand(pkt *protocol.Packet) error {
}
// Remove processed packet from queue
delete(c.CommandQueue, c.ExpectedCommandPID)
c.ExpectedCommandPID++
delete(queue, *expectedPID)
*expectedPID++
// Process the command
// Fix: processCommand should probably handle execution
if err := c.processCommand(data, nextPkt); err != nil {
log.Printf("Error processing command: %v", err)
}
@@ -177,16 +193,17 @@ func (c *Client) handleCommand(pkt *protocol.Packet) error {
return nil
}
// reassembleFragments collects all buffered fragments in order and returns reassembled data
func (c *Client) reassembleFragments() ([]byte, bool) {
// reassembleFragmentsCustom collects all buffered fragments in order from the given queue
// ending at currentPID.
func (c *Client) reassembleFragmentsCustom(queue map[uint16]*protocol.Packet, currentPID uint16) ([]byte, bool) {
var result []byte
compressed := false
// Find the start of the fragment sequence (scan backwards from current)
startPID := c.ExpectedCommandPID
startPID := currentPID
for {
prevPID := startPID - 1
pkt, ok := c.CommandQueue[prevPID]
pkt, ok := queue[prevPID]
if !ok {
break
}
@@ -198,9 +215,9 @@ func (c *Client) reassembleFragments() ([]byte, bool) {
startPID = prevPID
}
// Now collect from startPID to ExpectedCommandPID (inclusive)
for pid := startPID; pid <= c.ExpectedCommandPID; pid++ {
pkt, ok := c.CommandQueue[pid]
// Now collect from startPID to currentPID (inclusive)
for pid := startPID; pid <= currentPID; pid++ {
pkt, ok := queue[pid]
if !ok {
log.Printf("Missing fragment PID=%d during reassembly", pid)
return nil, false
@@ -212,11 +229,11 @@ func (c *Client) reassembleFragments() ([]byte, bool) {
}
result = append(result, pkt.Data...)
delete(c.CommandQueue, pid)
delete(queue, pid)
}
log.Printf("Reassembled fragments PID %d-%d, total %d bytes, compressed=%v",
startPID, c.ExpectedCommandPID, len(result), compressed)
startPID, currentPID, len(result), compressed)
return result, compressed
}

View File

@@ -55,6 +55,46 @@ func (c *Client) handlePacket(pkt *protocol.Packet) error {
c.Conn.SendPacket(ack)
return c.handleCommand(pkt)
case protocol.PacketTypeCommandLow:
// Send ACK Low
ackData := make([]byte, 2)
binary.BigEndian.PutUint16(ackData, pkt.Header.PacketID)
ack := protocol.NewPacket(protocol.PacketTypeAckLow, ackData)
// Spec/ts3j: AckLow has its own counter
c.AckLowPacketID++
ack.Header.PacketID = c.AckLowPacketID
ack.Header.ClientID = c.ClientID
// ACKs usually don't have NewProtocol flag set in Header byte
ack.Header.Type &= ^uint8(protocol.PacketFlagNewProtocol)
// ACKs for Command packets after handshake must be encrypted
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
key, nonce = crypto.GenerateKeyNonce(&ack.Header, true) // Client->Server=true
}
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], ack.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], ack.Header.ClientID)
meta[4] = ack.Header.Type
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, ack.Data)
ack.Data = encData
copy(ack.Header.MAC[:], mac)
// log.Printf("Sending ACK Low for server CommandLow PID=%d", pkt.Header.PacketID)
c.Conn.SendPacket(ack)
return c.handleCommand(pkt)
case protocol.PacketTypeVoice:
c.handleVoice(pkt)

135
pkg/audio/biquad.go Normal file
View File

@@ -0,0 +1,135 @@
package audio
import (
"github.com/moutend/go-equalizer/pkg/equalizer"
)
// EQChain manages a cascade of filters using go-equalizer library
// Now supports Stereo processing (Left/Right)
// EQChain manages a cascade of filters using go-equalizer library
// Now supports Stereo processing (Left/Right)
type EQChain struct {
FiltersLeft []*equalizer.Filter
FiltersRight []*equalizer.Filter
buffer []float64 // Reusable scratch buffer for processing
currentGains []float64 // Cache of current gain values
}
// NewEQChain creates the standard 5-band EQ chain (Stereo)
func NewEQChain(sampleRate float64) *EQChain {
// Standard bands: 100, 350, 1000, 3000, 8000
// Width = 1.0 (approx 1 octave)
createChain := func() []*equalizer.Filter {
f1 := equalizer.NewPeaking(sampleRate, 100, 1.0, 0)
f2 := equalizer.NewPeaking(sampleRate, 350, 1.0, 0)
f3 := equalizer.NewPeaking(sampleRate, 1000, 1.0, 0)
f4 := equalizer.NewPeaking(sampleRate, 3000, 1.0, 0)
f5 := equalizer.NewPeaking(sampleRate, 8000, 1.0, 0)
return []*equalizer.Filter{f1, f2, f3, f4, f5}
}
return &EQChain{
FiltersLeft: createChain(),
FiltersRight: createChain(),
buffer: make([]float64, 1920), // Pre-allocate for Stereo 20ms frame (960*2)
currentGains: make([]float64, 5), // Initialize cache with 0.0
}
}
// SetGain sets the gain for a specific band index (0-4)
func (e *EQChain) SetGain(bandIdx int, dbGain float64) {
if bandIdx < 0 || bandIdx >= 5 {
return
}
// Optimization: If gain hasn't changed, DO NOT recreate filter.
// Recreating the filter resets its internal history state (bi-quad delay buffers),
// causing audible clicks/pops (discontinuities) at every 20ms frame boundary.
const epsilon = 0.001
if delta := dbGain - e.currentGains[bandIdx]; delta > -epsilon && delta < epsilon {
return
}
rate := 48000.0 // Assuming fixed rate for now
// Frequencies map to our standard bands
freqs := []float64{100, 350, 1000, 3000, 8000}
// Create new filter with updated gain
// We use width=1.0 consistent with constructor
// Update BOTH Left and Right to keep balance
e.FiltersLeft[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
e.FiltersRight[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
// Update cache
e.currentGains[bandIdx] = dbGain
}
// Reset clears history of all filters
func (e *EQChain) Reset() {
// The library does not expose a Reset method.
}
// Process processes a slice of samples (Interleaved Stereo)
func (e *EQChain) Process(samples []int16) []int16 {
// Grow buffer if needed
if cap(e.buffer) < len(samples) {
e.buffer = make([]float64, len(samples))
}
e.buffer = e.buffer[:len(samples)]
// Float conversion with normalization (-1.0 to 1.0)
// We also apply a slight pre-attenuation (Headroom) to avoid clipping when boosting EQ.
// -3dB = 0.707
const headroom = 0.707
const norm = 1.0 / 32768.0
for i, s := range samples {
e.buffer[i] = float64(s) * norm * headroom
}
// Filter processing
// Input is assumed to be Interleaved Stereo: L, R, L, R...
// We iterate by 2 to process pairs.
for i := 0; i < len(e.buffer); i += 2 {
if i+1 >= len(e.buffer) {
break
}
valL := e.buffer[i]
valR := e.buffer[i+1]
// Run through LEFT chain
for _, f := range e.FiltersLeft {
valL = f.Apply(valL)
}
// Run through RIGHT chain
for _, f := range e.FiltersRight {
valR = f.Apply(valR)
}
// Write back to buffer
e.buffer[i] = valL
e.buffer[i+1] = valR
}
// Convert back to int16
for i, val := range e.buffer {
// Denormalize
val = val * 32767.0
// Hard clipping
if val > 32767 {
val = 32767
} else if val < -32768 {
val = -32768
}
// Write back directly to samples
samples[i] = int16(val)
}
return samples
}

View File

@@ -22,6 +22,7 @@ type Capturer struct {
running bool
mu sync.Mutex
stopChan chan struct{}
wg sync.WaitGroup
// Callback for captured audio (called with 960-sample frames)
onAudio func(samples []int16)
@@ -136,6 +137,7 @@ func (c *Capturer) Start() error {
return fmt.Errorf("failed to start audio client: %w", err)
}
c.wg.Add(1)
go c.captureLoop()
return nil
}
@@ -151,6 +153,7 @@ func (c *Capturer) Stop() {
c.mu.Unlock()
close(c.stopChan)
c.wg.Wait() // Wait for capture loop to finish before proceeding
c.client.Stop()
}
@@ -180,6 +183,7 @@ func (c *Capturer) IsRunning() bool {
}
func (c *Capturer) captureLoop() {
defer c.wg.Done()
ticker := time.NewTicker(10 * time.Millisecond) // Check more often than 20ms
defer ticker.Stop()

View File

@@ -8,6 +8,8 @@ const (
// UserSettings represents per-user audio configuration
type UserSettings struct {
Volume float32 // 0.0 - 1.0 (or higher for boost)
Muted bool
Volume float32 // 0.0 - 1.0 (or higher for boost)
Muted bool
Gains []float64 // 5-band Equalizer Gains in dB
EQBands []float64
}

138
pkg/audio/fft.go Normal file
View File

@@ -0,0 +1,138 @@
package audio
import (
"math"
)
// CalculateEQBands computes frequency magnitudes for 5 EQ bands from PCM samples.
// It uses a simplified approach tailored for visualization:
// 1. Converts int16 PCM to float64
// 2. Applies a Window function (Hanning)
// 3. Performs a simple DFT (Discrete Fourier Transform) - sufficient for small N/visualization
// 4. Aggregates bins into 5 bands: Bass, Low-Mid, Mid, Hybrid-High, High
func CalculateEQBands(samples []int16, sampleRate int) []float64 {
// We'll use a relatively small window size for responsiveness and performance
// 512 samples at 48kHz is ~10ms, which is very fast.
// 1024 samples is ~21ms.
const windowSize = 1024
if len(samples) < windowSize {
// Not enough data, return empty or zeroed bands
// Pad with zeros if we really wanted to processing, but for vis just return what we have?
// Actually, let's just make a copy and pad with zeros to windowSize
padded := make([]int16, windowSize)
copy(padded, samples)
samples = padded
} else {
// Take the last windowSize samples (most recent audio)
samples = samples[len(samples)-windowSize:]
}
// Prepare complex input
real := make([]float64, windowSize)
imag := make([]float64, windowSize)
// Apply Hanning Window
for i := 0; i < windowSize; i++ {
val := float64(samples[i]) / 32768.0 // Normalize to -1.0..1.0
// Hanning window formula
window := 0.5 * (1 - math.Cos(2*math.Pi*float64(i)/float64(windowSize-1)))
real[i] = val * window
}
// Perform basic FFT (Cooley-Tukey)
// Since windowSize is power of 2 (1024), we can use a recursive or iterative FFT.
// For simplicity in a single file without deps, we'll write a small recursive one or iterative.
// Given typical Go performance, a simple recursive one is fine for N=1024 per user talk event.
fft(real, imag)
// Calculate magnitudes and bucket into bands
// Freq resolution = SampleRate / WindowSize = 48000 / 1024 ~= 46.875 Hz per bin
// Nyquist = 24000 Hz (Bin 512)
// Band definitions (approximate range):
// 1. Sub/Bass: 0 - 250 Hz (Bins 0-5)
// 2. Low Mids: 250 - 500 Hz (Bins 6-10)
// 3. Mids: 500 - 2000 Hz (Bins 11-42)
// 4. Upper Mids: 2000 - 4000 Hz (Bins 43-85)
// 5. Highs: 4000Hz+ (Bins 86-512)
bands := make([]float64, 5)
// Helper to collect energy
collectEnergy := func(startBin, endBin int) float64 {
sum := 0.0
for i := startBin; i <= endBin && i < windowSize/2; i++ {
// Magnitude = sqrt(re^2 + im^2)
mag := math.Sqrt(real[i]*real[i] + imag[i]*imag[i])
sum += mag
}
// Average
count := float64(endBin - startBin + 1)
if count > 0 {
return sum / count
}
return 0
}
bands[0] = collectEnergy(1, 6) // Skip DC (bin 0)
bands[1] = collectEnergy(7, 12)
bands[2] = collectEnergy(13, 45)
bands[3] = collectEnergy(46, 90)
bands[4] = collectEnergy(91, 511)
// Normalize output for visualization (0.0 to 1.0)
// We need some scaling factor. Based on expected signals.
const scale = 10.0 // Reduced from 50.0 to fix saturation
for i := range bands {
bands[i] = bands[i] * scale
if bands[i] > 1.0 {
bands[i] = 1.0
}
}
return bands
}
// Simple in-place Cooley-Tukey FFT.
// n must be power of 2.
func fft(real, imag []float64) {
n := len(real)
if n <= 1 {
return
}
// Split even and odd
half := n / 2
realEven := make([]float64, half)
imagEven := make([]float64, half)
realOdd := make([]float64, half)
imagOdd := make([]float64, half)
for i := 0; i < half; i++ {
realEven[i] = real[2*i]
imagEven[i] = imag[2*i]
realOdd[i] = real[2*i+1]
imagOdd[i] = imag[2*i+1]
}
// Recursion
fft(realEven, imagEven)
fft(realOdd, imagOdd)
// Combine
for k := 0; k < half; k++ {
tReal := math.Cos(-2 * math.Pi * float64(k) / float64(n))
tImag := math.Sin(-2 * math.Pi * float64(k) / float64(n))
// Multiply odd by twist factor (tReal+itImag) * (oddReal+iOddImag)
// (ac - bd) + i(ad + bc)
twistReal := tReal*realOdd[k] - tImag*imagOdd[k]
twistImag := tReal*imagOdd[k] + tImag*realOdd[k]
real[k] = realEven[k] + twistReal
imag[k] = imagEven[k] + twistImag
real[k+half] = realEven[k] - twistReal
imag[k+half] = imagEven[k] - twistImag
}
}

View File

@@ -4,7 +4,7 @@ import (
"math"
)
// CalculateRMSLevel calculates the RMS level of PCM samples and returns 0-100
// CalculateRMSLevel calculates the RMS level of PCM samples and returns 0-100 (Logarithmic/dB)
func CalculateRMSLevel(samples []int16) int {
if len(samples) == 0 {
return 0
@@ -16,15 +16,33 @@ func CalculateRMSLevel(samples []int16) int {
}
rms := math.Sqrt(sum / float64(len(samples)))
// Normalize to 0-100 (max int16 is 32767)
level := int(rms / 32767.0 * 100.0)
// Normalize to 0.0 - 1.0
val := rms / 32768.0
if val < 0.000001 { // Avoid log(0)
return 0
}
// Convert to dB
db := 20 * math.Log10(val)
// Map -50dB (silence floor) to 0dB (max) to 0-100
const minDB = -50.0
if db < minDB {
return 0
}
// Scale
level := int((db - minDB) * (100.0 / (0 - minDB)))
if level > 100 {
level = 100
}
return level
}
// CalculatePeakLevel returns the peak level of PCM samples as 0-100
// CalculatePeakLevel returns the peak level of PCM samples as 0-100 (Logarithmic/dB)
func CalculatePeakLevel(samples []int16) int {
if len(samples) == 0 {
return 0
@@ -40,7 +58,26 @@ func CalculatePeakLevel(samples []int16) int {
}
}
return int(float64(peak) / 32767.0 * 100.0)
// Normalize
val := float64(peak) / 32768.0
if val < 0.000001 {
return 0
}
db := 20 * math.Log10(val)
const minDB = -50.0
if db < minDB {
// Linear falloff for very low signals to avoid clutter
return 0
}
level := int((db - minDB) * (100.0 / (0 - minDB)))
if level > 100 {
level = 100
}
return level
}
// LevelToBar converts a 0-100 level to a visual bar string

View File

@@ -30,6 +30,9 @@ type Player struct {
// map[SenderID] -> AudioQueue
userBuffers map[uint16][]int16
// User EQs (DSP Filters)
userEQs map[uint16]*EQChain
// User settings
userSettings map[uint16]*UserSettings
bufferMu sync.Mutex
@@ -66,11 +69,11 @@ func NewPlayer() (*Player, error) {
waveFormat := &wca.WAVEFORMATEX{
WFormatTag: wca.WAVE_FORMAT_PCM,
NChannels: 1,
NChannels: 2, // STEREO
NSamplesPerSec: 48000,
WBitsPerSample: 16,
NBlockAlign: 2,
NAvgBytesPerSec: 96000,
NBlockAlign: 4, // 16bit * 2 channels / 8 = 4 bytes
NAvgBytesPerSec: 192000, // 48000 * 4
CbSize: 0,
}
@@ -108,6 +111,7 @@ func NewPlayer() (*Player, error) {
muted: false,
stopChan: make(chan struct{}),
userBuffers: make(map[uint16][]int16),
userEQs: make(map[uint16]*EQChain),
userSettings: make(map[uint16]*UserSettings),
}, nil
}
@@ -163,22 +167,112 @@ func (p *Player) PlayPCM(senderID uint16, samples []int16) {
return
}
// ---------------------------------------------------------
// PHASE 1: Read Configuration (Safe Copy)
// ---------------------------------------------------------
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
// Check per-user mute
if settings, ok := p.userSettings[senderID]; ok && settings.Muted {
settings, hasSettings := p.userSettings[senderID]
if hasSettings && settings.Muted {
p.bufferMu.Unlock()
return
}
// Append to user's specific buffer
// This ensures sequential playback for the same user
p.userBuffers[senderID] = append(p.userBuffers[senderID], samples...)
// Get EQ Instance (Create if needed)
if _, ok := p.userEQs[senderID]; !ok {
p.userEQs[senderID] = NewEQChain(48000)
}
userEQ := p.userEQs[senderID]
// Limit buffer size per user to avoid memory leaks if stalled
if len(p.userBuffers[senderID]) > 48000*2 { // 2 seconds max
// Check/Copy Gains
var gains []float64
hasActiveEQ := false
if hasSettings && len(settings.Gains) == 5 {
// Copy gains to avoid race if UI changes them while we process
gains = make([]float64, 5)
copy(gains, settings.Gains)
for _, g := range gains {
if g != 0 {
hasActiveEQ = true
break
}
}
}
p.bufferMu.Unlock()
// ---------------------------------------------------------
// END PHASE 1 (Lock Released)
// ---------------------------------------------------------
// ---------------------------------------------------------
// PHASE 2: Heavy Processing (Concurrent)
// ---------------------------------------------------------
// Normalize to Stereo (Interleaved)
// If input is Mono (960 samples), expand to Stereo (1920 samples)
// If input is already Stereo, using it as is.
var stereoSamples []int16
if len(samples) < 1500 { // Heuristic for Mono (960)
stereoSamples = make([]int16, len(samples)*2)
for i, s := range samples {
stereoSamples[i*2] = s
stereoSamples[i*2+1] = s
}
} else {
// Already stereo (assumed)
stereoSamples = make([]int16, len(samples))
copy(stereoSamples, samples)
}
// Apply EQ Filters if needed
if hasActiveEQ {
// Update gains on the private EQ instance (Thread-safe per user)
for i, g := range gains {
userEQ.SetGain(i, g)
}
// Process Stereo
stereoSamples = userEQ.Process(stereoSamples)
}
// Calculate EQ bands for visualization
// Downmix to Mono for FFT visualization to save CPU and complexity
vizSamples := make([]int16, len(stereoSamples)/2)
for i := 0; i < len(vizSamples); i++ {
// Average L+R
val := (int32(stereoSamples[i*2]) + int32(stereoSamples[i*2+1])) / 2
vizSamples[i] = int16(val)
}
bands := CalculateEQBands(vizSamples, 48000)
// ---------------------------------------------------------
// PHASE 3: Write Output (Lock Acquired)
// ---------------------------------------------------------
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
// Re-check existence (could have disconnected?)
// Update user settings with new bands
if _, ok := p.userSettings[senderID]; !ok {
p.userSettings[senderID] = &UserSettings{Volume: 1.0, Muted: false}
}
p.userSettings[senderID].EQBands = bands
// Append to user's specific buffer
p.userBuffers[senderID] = append(p.userBuffers[senderID], stereoSamples...)
// Limit buffer size per user (Stereo 2sec = 48000*2*2 = 192000 items)
// frameSamples is 960 (20ms). 2sec = 100 frames * 960 * 2 = 192000
const maxBufferSize = 48000 * 2 * 2 // 2 seconds stereo
if len(p.userBuffers[senderID]) > maxBufferSize {
// Drop oldest
drop := len(p.userBuffers[senderID]) - 48000
drop := len(p.userBuffers[senderID]) - maxBufferSize
// Ensure we drop aligned to stereo frame (even number)
if drop%2 != 0 {
drop++
}
p.userBuffers[senderID] = p.userBuffers[senderID][drop:]
}
}
@@ -249,6 +343,66 @@ func (p *Player) GetUserSettings(clientID uint16) (float32, bool) {
return 1.0, false
}
// GetEQBands returns the current 5-band EQ values for a user (0.0-1.0)
func (p *Player) GetEQBands(clientID uint16) []float64 {
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
if settings, ok := p.userSettings[clientID]; ok {
return settings.EQBands
}
return nil
}
// SetUserGain sets the EQ gain for a specific band (0-4) and user.
// Gain is in dB (e.g. -12.0 to +12.0)
func (p *Player) SetUserGain(clientID uint16, bandIdx int, gainDb float64) {
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
p.ensureUserSettings(clientID)
// Ensure Gains slice exists
if len(p.userSettings[clientID].Gains) != 5 {
p.userSettings[clientID].Gains = make([]float64, 5)
}
if bandIdx >= 0 && bandIdx < 5 {
p.userSettings[clientID].Gains[bandIdx] = gainDb
}
}
// GetUserGain returns the gain for a band
func (p *Player) GetUserGain(clientID uint16, bandIdx int) float64 {
p.bufferMu.Lock()
defer p.bufferMu.Unlock()
if settings, ok := p.userSettings[clientID]; ok {
if len(settings.Gains) > bandIdx {
return settings.Gains[bandIdx]
}
}
return 0.0
}
func (p *Player) ensureUserSettings(clientID uint16) {
if _, ok := p.userSettings[clientID]; !ok {
p.userSettings[clientID] = &UserSettings{
Volume: 1.0,
Muted: false,
Gains: make([]float64, 5),
}
}
}
func (p *Player) ensureEQ(clientID uint16) {
if _, ok := p.userEQs[clientID]; !ok {
// New EQ chain
// Assume 48000 Hz, would be better to pass actual stream rate
p.userEQs[clientID] = NewEQChain(48000)
}
}
func (p *Player) playbackLoop() {
ticker := time.NewTicker(10 * time.Millisecond)
defer ticker.Stop()
@@ -278,7 +432,8 @@ func (p *Player) writeFrame() {
p.bufferMu.Lock()
// Mix audio from all active user buffers
mixed := make([]int32, frameSamples)
// Stereo mixing: buffer size is frameSamples * 2
mixed := make([]int32, frameSamples*2)
activeUsers := 0
hasAnyAudio := false
@@ -286,12 +441,15 @@ func (p *Player) writeFrame() {
if len(buf) > 0 {
hasAnyAudio = true
activeUsers++
// Take up to frameSamples from this user
toTake := frameSamples
if len(buf) < frameSamples {
// Take up to frameSamples*2 (Stereo) from this user
toTake := frameSamples * 2
if len(buf) < int(frameSamples)*2 {
toTake = len(buf)
}
// Ensure we take pairs (alignment)
toTake = toTake &^ 1 // clear lowest bit
for i := 0; i < toTake; i++ {
sample := int32(buf[i])
@@ -304,10 +462,10 @@ func (p *Player) writeFrame() {
}
// Advance buffer
if len(buf) <= frameSamples {
delete(p.userBuffers, id)
if len(buf) <= toTake {
delete(p.userBuffers, id) // Finished this buffer
} else {
p.userBuffers[id] = buf[frameSamples:]
p.userBuffers[id] = buf[toTake:]
}
}
}
@@ -330,8 +488,19 @@ func (p *Player) writeFrame() {
p.mu.Unlock()
// Write mixed samples with clipping protection and volume application
bufSlice := unsafe.Slice(buffer, int(frameSamples)*2)
for i := 0; i < int(frameSamples); i++ {
// Output buffer is for Stereo (frameSamples * 2 channels)
bufSlice := unsafe.Slice(buffer, int(frameSamples)*2*2) // *2 channels *2 bytes? No, unsafe.Slice takes count of Type.
// If buffer is *byte, we need bytes. frameSamples * 2 channels * 2 bytes/sample.
// Wait, GetBuffer returns BYTE pointer.
// Let's use uint16 slice.
// The logic below was: binary.LittleEndian.PutUint16(bufSlice[i*2:], ...)
// frameSamples was 960. loop 0..960.
// Now we have Stereo mixed buffer. Length = frameSamples * 2.
// We need to write frameSamples * 2 samples.
// Correct loop for Stereo:
for i := 0; i < int(frameSamples)*2; i++ { // Iterate over all samples (L, R, L, R...)
val := mixed[i]
// Apply master volume
@@ -343,6 +512,10 @@ func (p *Player) writeFrame() {
} else if val < -32768 {
val = -32768
}
// Map to output byte buffer
// i is sample index. Each sample is 2 bytes.
// Offset = i * 2.
binary.LittleEndian.PutUint16(bufSlice[i*2:], uint16(val))
}

View File

@@ -4,4 +4,4 @@ $env:PKG_CONFIG_PATH = "D:\esto_al_path\msys64\mingw64\lib\pkgconfig"
Write-Host "Starting TeamSpeak Client (Windows Native)..." -ForegroundColor Cyan
# go run ./cmd/client/main.go --server localhost:9987
# go run ./cmd/example --server localhost:9987
go run ./cmd/tui --server ts.vlazaro.es:9987 --nickname Adam --debug
go run ./cmd/tui --server 127.0.0.1:9987 --nickname Adam --debug