Stabilize TeamSpeak connection: implement command compression, fragmentation, and fix MAC/flags

This commit is contained in:
Jose Luis Montañes Ojados
2026-01-15 20:30:03 +01:00
parent 7a9844f977
commit 338f6d4704
7 changed files with 766 additions and 614 deletions

View File

@@ -1,17 +1,11 @@
package client
import (
"bytes"
"encoding/binary"
"fmt"
"log"
"strings"
"time"
"go-ts/pkg/protocol"
"go-ts/pkg/transport"
"github.com/dgryski/go-quicklz"
)
type Channel struct {
@@ -58,7 +52,9 @@ func (c *Client) Connect(address string) error {
return err
}
c.Conn = conn
// Initialize handshake state
log.Printf("Connected to UDP. Starting Handshake...")
// Initialize Handshake State
hs, err := NewHandshakeState(c.Conn)
if err != nil {
return err
@@ -68,630 +64,42 @@ func (c *Client) Connect(address string) error {
// Improve Identity Security Level to 8 (Standard Requirement)
c.Handshake.ImproveSecurityLevel(8)
log.Println("Connected to UDP. Starting Handshake...")
// Start Handshake Flow
// Step 0
// Send Init1
if err := c.Handshake.SendPacket0(); err != nil {
return err
}
// Read Loop for Handshake
timeout := time.After(5 * time.Second)
for !c.Connected {
select {
case pkt := <-c.Conn.PacketChan():
if err := c.handlePacket(pkt); err != nil {
log.Printf("Error handling packet: %v", err)
}
case <-timeout:
return fmt.Errorf("connection timed out")
}
}
log.Println("=== Connected! Now listening for server data... ===")
// Send Ping every 3 seconds
// Listen Loop
pktChan := c.Conn.PacketChan()
ticker := time.NewTicker(3 * time.Second)
defer ticker.Stop()
// KeepAlive Loop
for {
select {
case pkt := <-c.Conn.PacketChan():
case pkt := <-pktChan:
if err := c.handlePacket(pkt); err != nil {
log.Printf("Error handling packet: %v", err)
}
case <-ticker.C:
// Send Ping
c.PacketIDCounterC2S++
ping := protocol.NewPacket(protocol.PacketTypePing, nil)
ping.Header.PacketID = c.PacketIDCounterC2S
ping.Header.ClientID = c.ClientID // Should be assigned by server usually, but we use 0 or what?
// Encrypt Ping (if past handshake)
// For now, assuming unencrypted ping is ignored or we need to encrypt it if in full session
// Protocol says: "Everything is encrypted"
// Using correct keys...
// Actually handlePacket sends PONG. We need to Initiate PING?
// Simplified: Just printing "Ping" for now, or just wait for server to Ping us.
// The server usually pings. We must reply Pong.
// BUT if we don't send anything, we might time out.
// Let's rely on Server Pings for now, but remove the 5s exit timeout.
}
}
}
func (c *Client) handlePacket(pkt *protocol.Packet) error {
log.Printf("Received Packet: ID=%d, Type=%v, Len=%d", pkt.Header.PacketID, pkt.Header.PacketType(), len(pkt.Data))
switch pkt.Header.PacketType() {
case protocol.PacketTypeInit1:
return c.handleInit(pkt)
case protocol.PacketTypeCommand:
// Send ACK
// Ack Data: PacketID of the packet we're acknowledging (2 bytes)
ackData := make([]byte, 2)
binary.BigEndian.PutUint16(ackData, pkt.Header.PacketID)
ack := protocol.NewPacket(protocol.PacketTypeAck, ackData)
// ACK header PacketID should match the packet being acknowledged
ack.Header.PacketID = pkt.Header.PacketID
// ACKs for Command packets during handshake are encrypted with HandshakeKey
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], ack.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], ack.Header.ClientID) // ClientID (usually 0 during handshake)
meta[4] = ack.Header.Type
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, ack.Data)
ack.Data = encData
copy(ack.Header.MAC[:], mac)
log.Printf("Sending ACK for PacketID %d", pkt.Header.PacketID)
c.Conn.SendPacket(ack)
return c.handleCommand(pkt)
case protocol.PacketTypeVoice:
c.handleVoice(pkt)
case protocol.PacketTypePing:
// Respond with Pong
pong := protocol.NewPacket(protocol.PacketTypePong, nil)
pong.Header.PacketID = pkt.Header.PacketID // Acknowledgement
pong.Header.MAC = pkt.Header.MAC // TODO: calculate real mac
c.Conn.SendPacket(pong)
case protocol.PacketTypeAck:
// Server acknowledged our packet - ACKs are encrypted
// Decrypt with HandshakeKey
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
meta := make([]byte, 3) // Server->Client is 3 bytes
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type
data, err := protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
log.Printf("ACK decryption failed: %v", err)
return nil
}
ackPId := uint16(0)
if len(data) >= 2 {
ackPId = binary.BigEndian.Uint16(data[0:2])
}
log.Printf("Received ACK for PacketID %d", ackPId)
// If ACK is for clientek (PID=1), proceed with clientinit
if ackPId == 1 && c.Handshake != nil && c.Handshake.Step == 5 {
log.Println("clientek acknowledged! Sending clientinit...")
c.Handshake.Step = 6
return c.sendClientInit()
}
// If ACK is for clientinit (PID=2), we're connected!
if ackPId == 2 && c.Handshake != nil && c.Handshake.Step == 6 {
log.Println("clientinit acknowledged! Connection established!")
c.Connected = true
}
}
return nil
}
func (c *Client) handleInit(pkt *protocol.Packet) error {
// Determine step based on packet content or local state
// Simple state machine
if c.Handshake.Step == 0 {
if err := c.Handshake.HandlePacket1(pkt); err != nil {
return err
}
log.Println("Handshake Step 1 Completed. Sending Step 2...")
return c.Handshake.SendPacket2()
} else if c.Handshake.Step == 1 {
// Wait, step 1 is processed, we sent step 2.
// We expect Step 3.
if pkt.Data[0] == 0x03 {
if err := c.Handshake.HandlePacket3(pkt); err != nil {
return err
}
log.Println("Handshake Step 3 Completed. Sending Step 4 (Puzzle Solution)...")
// Send Packet 4 (Not fully implemented in this snippet due to puzzle complexity)
// c.Handshake.SendPacket4()
}
}
return nil
}
func (c *Client) handleCommand(pkt *protocol.Packet) error {
// Check if Encrypted
// PacketTypeCommand is usually encrypted.
// Flag check? The flag is in the Header (e.g. Unencrypted flag).
// If Unencrypted flag is SET, it's cleartext.
// Spec: "Command ... Encrypted: ✓". So Unencrypted flag is CLEARED.
// Decrypt if necessary
var data []byte
var err error
if pkt.Header.FlagUnencrypted() {
data = pkt.Data
} else {
var key, nonce []byte
decrypted := false
// 1. Try SharedSecret if available
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
// Use SharedSecret-based encryption
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
// Server->Client = false
key, nonce = crypto.GenerateKeyNonce(&pkt.Header, false)
// AAD for Server->Client: PacketID (2) + Type|Flags (1)
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type // Type includes Flags
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err == nil {
decrypted = true
} else {
log.Printf("SharedSecret decrypt failed (PID=%d): %v. Trying HandshakeKey...", pkt.Header.PacketID, err)
}
}
// 2. Fallback to HandshakeKey
if !decrypted {
key = protocol.HandshakeKey[:]
nonce = protocol.HandshakeNonce[:]
// AAD matching KeyNonce derivation context?
// HandshakeKey usage usually has same AAD requirements?
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type // Type includes Flags
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
log.Printf("All decryption attempts failed for PID=%d: %v", pkt.Header.PacketID, err)
return fmt.Errorf("decryption failed: %v", err)
}
}
}
// On first encrypted command set Connected = true (Fallback if ACK missed)
if !c.Connected && pkt.Header.PacketID > 2 {
c.Connected = true
}
// Fragment reassembly logic:
// - First fragment: Fragmented=true, optionally Compressed=true -> start buffer
// - Middle fragments: Fragmented=false, Compressed=false -> append to buffer
// - Last fragment: Fragmented=true -> append and process
isFragmented := pkt.Header.FlagFragmented()
if isFragmented && !c.Fragmenting {
// First fragment - start collecting
c.Fragmenting = true
c.FragmentBuffer = make([]byte, 0, 4096)
c.FragmentBuffer = append(c.FragmentBuffer, data...)
c.FragmentStartPktID = pkt.Header.PacketID
c.FragmentCompressed = pkt.Header.FlagCompressed()
log.Printf("Fragment start (PID=%d, Compressed=%v, Len=%d)", pkt.Header.PacketID, c.FragmentCompressed, len(data))
return nil // Wait for more fragments
} else if c.Fragmenting && !isFragmented {
// Middle fragment - append
c.FragmentBuffer = append(c.FragmentBuffer, data...)
log.Printf("Fragment continue (PID=%d, TotalLen=%d)", pkt.Header.PacketID, len(c.FragmentBuffer))
return nil // Wait for more fragments
} else if c.Fragmenting && isFragmented {
// Last fragment - complete reassembly
c.FragmentBuffer = append(c.FragmentBuffer, data...)
log.Printf("Fragment end (PID=%d, TotalLen=%d)", pkt.Header.PacketID, len(c.FragmentBuffer))
data = c.FragmentBuffer
// Decompress if first fragment was compressed
if c.FragmentCompressed {
decompressed, err := quicklz.Decompress(data)
if err != nil {
log.Printf("QuickLZ decompression of fragmented data failed: %v", err)
// Fallback to raw data
} else {
log.Printf("Decompressed fragmented: %d -> %d bytes", len(data), len(decompressed))
data = decompressed
}
}
// Reset fragment state
c.Fragmenting = false
c.FragmentBuffer = nil
} else {
// Non-fragmented packet - decompress if needed
if pkt.Header.FlagCompressed() {
decompressed, err := quicklz.Decompress(data)
if err != nil {
log.Printf("QuickLZ decompression failed: %v (falling back to raw)", err)
// Fallback to raw data - might not be compressed despite flag
} else {
log.Printf("Decompressed: %d -> %d bytes", len(data), len(decompressed))
data = decompressed
}
}
}
cmdStr := string(data)
// Debug: Log packet flags and raw command preview
log.Printf("Debug Packet: Compressed=%v, Fragmented=%v, RawLen=%d, Preview=%q",
pkt.Header.FlagCompressed(), pkt.Header.FlagFragmented(), len(data),
func() string {
if len(cmdStr) > 100 {
return cmdStr[:100]
}
return cmdStr
}())
// Fix Garbage Headers (TS3 often sends binary garbage before command)
// Scan for first valid lower case [a-z] char (Most commands are lowercase)
validStart := strings.IndexFunc(cmdStr, func(r rune) bool {
return (r >= 'a' && r <= 'z')
})
if validStart > 0 && validStart < 50 {
cmdStr = cmdStr[validStart:]
}
log.Printf("Command: %s", cmdStr)
// Parse Command
cmd, args := protocol.ParseCommand([]byte(cmdStr))
switch cmd {
case "initivexpand2":
err := c.Handshake.ProcessInitivexpand2(args)
if err != nil {
log.Printf("Error processing initivexpand2: %v", err)
}
case "initserver":
// Server sends this after clientinit - contains our clientID
if cid, ok := args["aclid"]; ok {
var id uint64
fmt.Sscanf(cid, "%d", &id)
c.ClientID = uint16(id)
log.Printf("Assigned ClientID: %d", c.ClientID)
}
if name, ok := args["virtualserver_name"]; ok {
log.Printf("Server Name: %s", protocol.Unescape(name))
}
case "channellist":
// Parse channel info
ch := &Channel{}
if cid, ok := args["cid"]; ok {
fmt.Sscanf(cid, "%d", &ch.ID)
}
if pid, ok := args["cpid"]; ok {
fmt.Sscanf(pid, "%d", &ch.ParentID)
}
if name, ok := args["channel_name"]; ok {
ch.Name = protocol.Unescape(name)
}
if order, ok := args["channel_order"]; ok {
fmt.Sscanf(order, "%d", &ch.Order)
}
c.Channels[ch.ID] = ch
log.Printf("Channel: [%d] NameRaw=%q Order=%d Args=%v", ch.ID, ch.Name, ch.Order, args)
case "channellistfinished":
log.Printf("=== Channel List Complete (%d channels) ===", len(c.Channels))
var targetChan *Channel
for _, ch := range c.Channels {
log.Printf(" - [%d] %s (parent=%d)", ch.ID, ch.Name, ch.ParentID)
if ch.Name == "Test" {
targetChan = ch
}
}
if targetChan == nil {
if ch, ok := c.Channels[2]; ok {
log.Printf("Name parsing failed. Defaulting to Channel 2 as 'Test'.")
targetChan = ch
}
}
if targetChan != nil {
log.Printf("Found target channel 'Test' (ID=%d). Joining...", targetChan.ID)
if c.ClientID == 0 {
log.Println("ERROR: ClientID is 0. Cannot join channel. 'initserver' missing?")
return nil
}
// clientmove clid={clid} cid={cid} cpw=
cmd := fmt.Sprintf("clientmove clid=%d cid=%d cpw=", c.ClientID, targetChan.ID)
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
// Set NewProtocol flag (required for all commands) BEFORE computing meta
pkt.Header.Type |= protocol.PacketFlagNewProtocol
pkt.Header.PacketID = c.PacketIDCounterC2S + 1
pkt.Header.ClientID = c.ClientID
c.PacketIDCounterC2S++
ping.Header.PacketID = c.PacketIDCounterC2S
ping.Header.ClientID = c.ClientID
// Must NOT have NewProtocol (0x20) flag for Pings/Pongs
ping.Header.Type = uint8(protocol.PacketTypePing) | protocol.PacketFlagUnencrypted
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
meta[4] = pkt.Header.Type // Now includes NewProtocol flag
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
k, n := crypto.GenerateKeyNonce(&pkt.Header, true)
encData, mac, _ := protocol.EncryptEAX(k, n, meta, pkt.Data)
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
log.Printf("Sending clientmove command: clid=%d cid=%d (PID=%d)", c.ClientID, targetChan.ID, pkt.Header.PacketID)
c.Conn.SendPacket(pkt)
}
case "notifycliententerview":
// A client entered the server
nick := ""
if n, ok := args["client_nickname"]; ok {
nick = protocol.Unescape(n)
log.Printf("Client entered: %s", nick)
// If this matches our nickname, store the ClientID (Fallback if initserver missed)
if nick == c.Nickname && c.ClientID == 0 {
if clidStr, ok := args["clid"]; ok {
var id uint64
fmt.Sscanf(clidStr, "%d", &id)
c.ClientID = uint16(id)
log.Printf("Identified Self via notifycliententerview! ClientID: %d", c.ClientID)
// Use SharedMac if available, otherwise zeros (as per ts3j InitPacketTransformation)
if c.Handshake != nil && len(c.Handshake.SharedMac) > 0 {
copy(ping.Header.MAC[:], c.Handshake.SharedMac)
} else {
// Initialize Header.MAC with zeros
for i := 0; i < 8; i++ {
ping.Header.MAC[i] = 0
}
}
}
case "notifytextmessage":
if msg, ok := args["msg"]; ok {
log.Printf("Text Message: %s", protocol.Unescape(msg))
}
case "notifychannelgrouplist":
// Ignore for now
case "notifyservergrouplist":
// Ignore for now
case "notifyclientneededpermissions":
// Ignore for now
case "notifyclientleftview":
if nick, ok := args["client_nickname"]; ok {
log.Printf("Client left: %s", protocol.Unescape(nick))
}
case "notifyconnectioninfo":
// Ignore
case "badges":
// Server badges info
case "notifyclientchatcomposing":
if nick, ok := args["client_nickname"]; ok {
// This often comes as clid, need to lookup in future
log.Printf("Client typing: %s", protocol.Unescape(nick))
}
case "notifyclientmoved":
if nick, ok := args["client_nickname"]; ok {
log.Printf("Client moved: %s", protocol.Unescape(nick))
}
case "error":
if id, ok := args["id"]; ok && id == "522" {
log.Println("WARNING: Server rejected client version (Error 522). Ignoring as requested.")
// We pretend we are connected?
// The server might not send further data, but we won't crash.
c.Connected = true
} else {
log.Printf("Server Error: %v", args)
}
default:
// Handle prefixes for weirdly updated commands
if strings.HasPrefix(cmd, "badges") {
// ignore badges garbage
log.Println("Received Badges (Ignored)")
return nil
}
// Fuzzy match for corrupted notifycliententerview
if strings.HasPrefix(cmd, "notifyclient") {
// Attempt to process it anyway
nick := ""
if n, ok := args["client_nickname"]; ok {
nick = protocol.Unescape(n)
log.Printf("Fuzzy Notify Client Entered: %s", nick)
if nick == c.Nickname && c.ClientID == 0 {
if clidStr, ok := args["clid"]; ok {
var id uint64
fmt.Sscanf(clidStr, "%d", &id)
c.ClientID = uint16(id)
log.Printf("Identified Self via Fuzzy Notify! ClientID: %d", c.ClientID)
}
}
}
return nil
}
// Log unknown commands for debugging
log.Printf("Unhandled command: %s Args: %v", cmd, args)
log.Printf("Sending KeepAlive Ping (PID=%d)", ping.Header.PacketID)
c.Conn.SendPacket(ping)
}
}
return nil
}
// Helper to encrypt/decrypt based on state
func (c *Client) getCryptoState() (key, nonce, mac []byte, isHandshake bool) {
if c.Handshake != nil && len(c.Handshake.SharedSecret) > 0 {
// Use Derived Keys
// But we need to Generate Key/Nonce per packet!
// This logic belongs in the Packet Encode/Decode flow or a higher level wrapper?
return nil, nil, c.Handshake.SharedMac, false
}
return protocol.HandshakeKey, protocol.HandshakeNonce, protocol.HandshakeMac[:], true
}
// Update encryption in Send/Receive
// Packet handling needs to know WHICH key to use.
// Simple rule:
// - Init1 (Type 8): Handshake Keys (Unencrypted payload, but MAC is HandshakeMac)
// - Command (Type 2): Encrypted.
// - CommandLow (Type 3): Encrypted.
// - Voice (Type 0): Encrypted.
// - Ping/Pong: Encrypted.
// - Ack: Encrypted.
// IF c.Handshake.SharedSecret is set, we SHOULD use it for Commands?
// "The crypto handshake is now completed. The normal encryption scheme ... is from now on used."
// This starts AFTER clientek? Or WITH clientek? "clientek already has the packet id 1"
func (c *Client) handleVoice(pkt *protocol.Packet) {
// Parse Voice Header (Server -> Client)
// VID(2) + CID(2) + Codec(1) + Data
if len(pkt.Data) < 5 {
return
}
vid := binary.BigEndian.Uint16(pkt.Data[0:2])
// cid := binary.BigEndian.Uint16(pkt.Data[2:4]) // Talking client ID (not needed for echo)
codec := pkt.Data[4]
voiceData := pkt.Data[5:]
log.Printf("Voice Packet received. VID=%d, Codec=%d, Size=%d", vid, codec, len(voiceData))
// Build echo packet (Client -> Server)
// Format: VID(2) + Codec(1) + Data
echoData := make([]byte, 2+1+len(voiceData))
binary.BigEndian.PutUint16(echoData[0:2], vid)
echoData[2] = codec
copy(echoData[3:], voiceData)
echoPkt := protocol.NewPacket(protocol.PacketTypeVoice, echoData)
echoPkt.Header.PacketID = pkt.Header.PacketID // Use same ID for voice
echoPkt.Header.ClientID = c.ClientID
// Encrypt voice packet with SharedSecret
if c.Handshake != nil && len(c.Handshake.SharedIV) > 0 {
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
key, nonce := crypto.GenerateKeyNonce(&echoPkt.Header, true)
// Meta for Client->Server: PID(2) + CID(2) + PT(1)
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], echoPkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], echoPkt.Header.ClientID)
meta[4] = echoPkt.Header.Type
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, echoPkt.Data)
if err != nil {
log.Printf("Voice encryption failed: %v", err)
return
}
echoPkt.Data = encData
copy(echoPkt.Header.MAC[:], mac)
} else {
// If no encryption keys, use SharedMac
echoPkt.Header.MAC = protocol.HandshakeMac
}
c.Conn.SendPacket(echoPkt)
}
func (c *Client) sendClientInit() error {
// Build clientinit command
// Build clientinit command using TeamSpeak 3.6.2 credentials
params := map[string]string{
"client_nickname": c.Nickname,
"client_version": "3.6.2 [Build: 1690976575]",
"client_platform": "Windows",
"client_input_hardware": "1",
"client_output_hardware": "1",
"client_default_channel": "",
"client_default_channel_password": "",
"client_server_password": "",
"client_meta_data": "",
"client_version_sign": "OyuLO/1bVJtBsXLRWzfGVhNaQd7B9D4QTolZm14DM1uCbSXVvqX3Ssym3sLi/PcvOl+SAUlX6NwBPOsQdwOGDw==",
"client_key_offset": fmt.Sprintf("%d", c.Handshake.IdentityOffset),
"client_nickname_phonetic": "",
"client_default_token": "",
"hwid": "1234567890",
}
// Construct command string manually to ensure key correctness
var buf bytes.Buffer
buf.WriteString("clientinit")
for k, v := range params {
buf.WriteString(" ")
buf.WriteString(k)
buf.WriteString("=")
buf.WriteString(protocol.Escape(v))
}
cmd := buf.String()
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
pkt.Header.PacketID = 2 // After clientek (1)
pkt.Header.Type |= protocol.PacketFlagNewProtocol
// After clientek, use SharedSecret encryption (Now that we fixed derivation logic)
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
// Client->Server = true
key, nonce := crypto.GenerateKeyNonce(&pkt.Header, true)
// AAD must match the header structure exactly (excluding MAC)
// Client Header: PacketID (2) + ClientID (2) + Type|Flags (1)
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
// Byte 4 is Type (which includes Flags)
meta[4] = pkt.Header.Type
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
if err != nil {
return err
}
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
log.Println("Sending clientinit (Packet 2) [Encrypted with SharedSecret]...")
c.PacketIDCounterC2S = 2 // Update counter after clientinit
return c.Conn.SendPacket(pkt)
}

327
internal/client/commands.go Normal file
View File

@@ -0,0 +1,327 @@
package client
import (
"encoding/binary"
"fmt"
"log"
"strings"
"go-ts/pkg/protocol"
"github.com/dgryski/go-quicklz"
)
func (c *Client) handleCommand(pkt *protocol.Packet) error {
// Check if Encrypted
// PacketTypeCommand is usually encrypted.
// Flag check? The flag is in the Header (e.g. Unencrypted flag).
// If Unencrypted flag is SET, it's cleartext.
// Spec: "Command ... Encrypted: ✓". So Unencrypted flag is CLEARED.
// Decrypt if necessary
var data []byte
var err error
if pkt.Header.FlagUnencrypted() {
data = pkt.Data
} else {
var key, nonce []byte
decrypted := false
// 1. Try SharedSecret if available
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
// Use SharedSecret-based encryption
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
// Server->Client = false
key, nonce = crypto.GenerateKeyNonce(&pkt.Header, false)
// AAD for Server->Client: PacketID (2) + Type|Flags (1)
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type // Type includes Flags
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err == nil {
decrypted = true
} else {
log.Printf("SharedSecret decrypt failed (PID=%d): %v. Trying HandshakeKey...", pkt.Header.PacketID, err)
}
}
// 2. Fallback to HandshakeKey
if !decrypted {
key = protocol.HandshakeKey[:]
nonce = protocol.HandshakeNonce[:]
// AAD matching KeyNonce derivation context?
// HandshakeKey usage usually has same AAD requirements?
meta := make([]byte, 3)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type // Type includes Flags
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
log.Printf("All decryption attempts failed for PID=%d: %v", pkt.Header.PacketID, err)
return fmt.Errorf("decryption failed: %v", err)
}
}
}
// On first encrypted command set Connected = true (Fallback if ACK missed)
if !c.Connected && pkt.Header.PacketID > 2 {
c.Connected = true
}
// Fragment reassembly logic:
// - First fragment: Fragmented=true, optionally Compressed=true -> start buffer
// - Middle fragments: Fragmented=false, Compressed=false -> append to buffer
// - Last fragment: Fragmented=true -> append and process
isFragmented := pkt.Header.FlagFragmented()
if isFragmented && !c.Fragmenting {
// First fragment - start collecting
c.Fragmenting = true
c.FragmentBuffer = make([]byte, 0, 4096)
c.FragmentBuffer = append(c.FragmentBuffer, data...)
c.FragmentStartPktID = pkt.Header.PacketID
c.FragmentCompressed = pkt.Header.FlagCompressed()
log.Printf("Fragment start (PID=%d, Compressed=%v, Len=%d)", pkt.Header.PacketID, c.FragmentCompressed, len(data))
return nil // Wait for more fragments
} else if c.Fragmenting && !isFragmented {
// Middle fragment - append
c.FragmentBuffer = append(c.FragmentBuffer, data...)
log.Printf("Fragment continue (PID=%d, TotalLen=%d)", pkt.Header.PacketID, len(c.FragmentBuffer))
return nil // Wait for more fragments
} else if c.Fragmenting && isFragmented {
// Last fragment - complete reassembly
c.FragmentBuffer = append(c.FragmentBuffer, data...)
log.Printf("Fragment end (PID=%d, TotalLen=%d)", pkt.Header.PacketID, len(c.FragmentBuffer))
data = c.FragmentBuffer
// Decompress if first fragment was compressed
if c.FragmentCompressed {
decompressed, err := quicklz.Decompress(data)
if err != nil {
log.Printf("QuickLZ decompression of fragmented data failed: %v", err)
// Fallback to raw data
} else {
log.Printf("Decompressed fragmented: %d -> %d bytes", len(data), len(decompressed))
data = decompressed
}
}
// Reset fragment state
c.Fragmenting = false
c.FragmentBuffer = nil
} else {
// Non-fragmented packet - decompress if needed
if pkt.Header.FlagCompressed() {
decompressed, err := quicklz.Decompress(data)
if err != nil {
log.Printf("QuickLZ decompression failed: %v (falling back to raw)", err)
// Fallback to raw data - might not be compressed despite flag
} else {
log.Printf("Decompressed: %d -> %d bytes", len(data), len(decompressed))
data = decompressed
}
}
}
cmdStr := string(data)
// Debug: Log packet flags and raw command preview
log.Printf("Debug Packet: Compressed=%v, Fragmented=%v, RawLen=%d, Preview=%q",
pkt.Header.FlagCompressed(), pkt.Header.FlagFragmented(), len(data),
func() string {
if len(cmdStr) > 100 {
return cmdStr[:100]
}
return cmdStr
}())
// Fix Garbage Headers (TS3 often sends binary garbage before command)
// Scan for first valid lower case [a-z] char (Most commands are lowercase)
validStart := strings.IndexFunc(cmdStr, func(r rune) bool {
return (r >= 'a' && r <= 'z')
})
if validStart > 0 && validStart < 50 {
cmdStr = cmdStr[validStart:]
}
log.Printf("Command: %s", cmdStr)
// Parse Command
cmd, args := protocol.ParseCommand([]byte(cmdStr))
switch cmd {
case "initivexpand2":
err := c.Handshake.ProcessInitivexpand2(args)
if err != nil {
log.Printf("Error processing initivexpand2: %v", err)
}
case "initserver":
// Server sends this after clientinit - contains our clientID
if cid, ok := args["aclid"]; ok {
var id uint64
fmt.Sscanf(cid, "%d", &id)
c.ClientID = uint16(id)
log.Printf("Assigned ClientID: %d", c.ClientID)
}
if name, ok := args["virtualserver_name"]; ok {
log.Printf("Server Name: %s", protocol.Unescape(name))
}
case "channellist":
// Parse channel info
ch := &Channel{}
if cid, ok := args["cid"]; ok {
fmt.Sscanf(cid, "%d", &ch.ID)
}
if pid, ok := args["cpid"]; ok {
fmt.Sscanf(pid, "%d", &ch.ParentID)
}
if name, ok := args["channel_name"]; ok {
ch.Name = protocol.Unescape(name)
}
if order, ok := args["channel_order"]; ok {
fmt.Sscanf(order, "%d", &ch.Order)
}
c.Channels[ch.ID] = ch
log.Printf("Channel: [%d] NameRaw=%q Order=%d Args=%v", ch.ID, ch.Name, ch.Order, args)
case "channellistfinished":
log.Printf("=== Channel List Complete (%d channels) ===", len(c.Channels))
var targetChan *Channel
for _, ch := range c.Channels {
log.Printf(" - [%d] %s (parent=%d)", ch.ID, ch.Name, ch.ParentID)
if ch.Name == "Test" {
targetChan = ch
}
}
if targetChan == nil {
if ch, ok := c.Channels[2]; ok {
log.Printf("Name parsing failed. Defaulting to Channel 2 as 'Test'.")
targetChan = ch
}
}
if targetChan != nil {
log.Printf("Found target channel 'Test' (ID=%d). Joining...", targetChan.ID)
if c.ClientID == 0 {
log.Println("ERROR: ClientID is 0. Cannot join channel. 'initserver' missing?")
return nil
}
moveCmd := protocol.NewCommand("clientmove")
moveCmd.AddParam("clid", fmt.Sprintf("%d", c.ClientID))
moveCmd.AddParam("cid", fmt.Sprintf("%d", targetChan.ID))
moveCmd.AddParam("cpw", "")
return c.SendCommand(moveCmd)
}
case "notifycliententerview":
// A client entered the server
nick := ""
if n, ok := args["client_nickname"]; ok {
nick = protocol.Unescape(n)
log.Printf("Client entered: %s", nick)
}
case "notifytextmessage":
// targetmode: 1=Private, 2=Channel, 3=Server
msg := ""
invoker := "Unknown"
if m, ok := args["msg"]; ok {
msg = protocol.Unescape(m)
}
if name, ok := args["invokername"]; ok {
invoker = protocol.Unescape(name)
}
targetMode := "Unknown"
if tm, ok := args["targetmode"]; ok {
switch tm {
case "1":
targetMode = "Private"
case "2":
targetMode = "Channel"
case "3":
targetMode = "Server"
}
}
log.Printf("[Chat][%s] %s: %s", targetMode, invoker, msg)
case "notifyclientchatcomposing":
// Someone is typing
// We only get clid, need to map to name if possible, or just log clid
clid := "Unknown"
if id, ok := args["clid"]; ok {
clid = id
}
log.Printf("Client %s is typing...", clid)
case "notifyclientmoved":
// Client moved to another channel
clid := args["clid"]
ctid := args["ctid"]
// reasonid: 0=switched, 1=moved, 2=timeout, 3=kick, 4=unknown
log.Printf("Client %s moved to Channel %s", clid, ctid)
case "notifyclientchannelgroupchanged":
// Client channel group changed
// invokerid=0 invokername=Server cgid=8 cid=1 clid=3 cgi=1
invoker := "Unknown"
if name, ok := args["invokername"]; ok {
invoker = protocol.Unescape(name)
}
log.Printf("Client %s channel group changed to %s in Channel %s by %s",
args["clid"], args["cgid"], args["cid"], invoker)
case "notifyconnectioninforequest":
// Server asking for connection info. We MUST reply to update Ping in UI and avoid timeout.
log.Println("Server requested connection info. sending 'setconnectioninfo'...")
cmd := protocol.NewCommand("setconnectioninfo")
cmd.AddParam("connection_ping", "50")
cmd.AddParam("connection_ping_deviation", "5")
// Detailed stats for each kind as seen in ts3j (KEEPALIVE, SPEECH, CONTROL)
kinds := []string{"keepalive", "speech", "control"}
for _, k := range kinds {
cmd.AddParam("connection_packets_sent_"+k, "500")
cmd.AddParam("connection_packets_received_"+k, "500")
cmd.AddParam("connection_bytes_sent_"+k, "25000")
cmd.AddParam("connection_bytes_received_"+k, "25000")
cmd.AddParam("connection_bandwidth_sent_last_second_"+k, "200")
cmd.AddParam("connection_bandwidth_received_last_second_"+k, "200")
cmd.AddParam("connection_bandwidth_sent_last_minute_"+k, "200")
cmd.AddParam("connection_bandwidth_received_last_minute_"+k, "200")
cmd.AddParam("connection_server2client_packetloss_"+k, "0")
}
cmd.AddParam("connection_server2client_packetloss_total", "0")
return c.SendCommand(cmd)
case "notifyclientupdated":
// Client updated (e.g. muted/unmuted)
clid := args["clid"]
log.Printf("Client %s updated: %v", clid, args)
case "error":
// Server reported an error
id := args["id"]
msg := protocol.Unescape(args["msg"])
log.Printf("SERVER ERROR: ID=%s MSG=%s", id, msg)
case "notifyservergrouplist", "notifychannelgrouplist", "notifyclientneededpermissions":
// Ignore verbose noisy setup commands
default:
log.Printf("Unhandled command: %s Args: %v", cmd, args)
}
return nil
}

View File

@@ -290,7 +290,8 @@ func (h *HandshakeState) ProcessInitivexpand2(cmdArgs map[string]string) error {
// SharedMac = SHA1(SharedIV)[0..8]
macHash := sha1.Sum(h.SharedIV)
copy(h.SharedMac[:], macHash[0:8])
h.SharedMac = make([]byte, 8)
copy(h.SharedMac, macHash[0:8])
log.Printf("Debug - SharedSecret (SHA512): %s", hex.EncodeToString(h.SharedSecret))
log.Printf("Debug - SharedIV: %s", hex.EncodeToString(h.SharedIV))

172
internal/client/packet.go Normal file
View File

@@ -0,0 +1,172 @@
package client
import (
"bytes"
"encoding/binary"
"log"
"go-ts/pkg/protocol"
)
func (c *Client) handlePacket(pkt *protocol.Packet) error {
log.Printf("Received Packet: ID=%d, Type=%v, Len=%d", pkt.Header.PacketID, pkt.Header.PacketType(), len(pkt.Data))
switch pkt.Header.PacketType() {
case protocol.PacketTypeInit1:
return c.handleInit(pkt)
case protocol.PacketTypeCommand:
// Send ACK
ackData := make([]byte, 2)
binary.BigEndian.PutUint16(ackData, pkt.Header.PacketID)
ack := protocol.NewPacket(protocol.PacketTypeAck, ackData)
// Spec/ts3j: Header PID for ACK matches the packet being acknowledged
ack.Header.PacketID = pkt.Header.PacketID
ack.Header.ClientID = c.ClientID
// ACKs usually don't have NewProtocol flag set in Header byte
ack.Header.Type &= ^uint8(protocol.PacketFlagNewProtocol)
// ACKs for Command packets after handshake must be encrypted
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
key, nonce = crypto.GenerateKeyNonce(&ack.Header, true) // Client->Server=true
}
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], ack.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], ack.Header.ClientID)
meta[4] = ack.Header.Type
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, ack.Data)
ack.Data = encData
copy(ack.Header.MAC[:], mac)
// log.Printf("Sending ACK for server Command PID=%d", pkt.Header.PacketID)
c.Conn.SendPacket(ack)
return c.handleCommand(pkt)
case protocol.PacketTypeVoice:
c.handleVoice(pkt)
case protocol.PacketTypePing:
// Respond with Pong
pong := protocol.NewPacket(protocol.PacketTypePong, nil)
// Spec/ts3j: Header PID for Pong matches the Ping ID
pong.Header.PacketID = pkt.Header.PacketID
pong.Header.ClientID = c.ClientID
// Must NOT have NewProtocol (0x20) flag for Pings/Pongs
pong.Header.Type = uint8(protocol.PacketTypePong) | protocol.PacketFlagUnencrypted
// Use SharedMac if available, otherwise zeros
if c.Handshake != nil && len(c.Handshake.SharedMac) > 0 {
copy(pong.Header.MAC[:], c.Handshake.SharedMac)
} else {
for i := 0; i < 8; i++ {
pong.Header.MAC[i] = 0
}
}
// The body of the Pong must contain the PID of the Ping it's acknowledging
pong.Data = make([]byte, 2)
binary.BigEndian.PutUint16(pong.Data, pkt.Header.PacketID)
log.Printf("Sending Pong (HeaderPID=%d) for Ping", pong.Header.PacketID)
c.Conn.SendPacket(pong)
case protocol.PacketTypePong:
// Server acknowledged our Ping
log.Printf("Received Pong for sequence %d", pkt.Header.PacketID)
case protocol.PacketTypeAck:
// Server acknowledged our packet
var data []byte
var err error
if pkt.Header.FlagUnencrypted() {
data = pkt.Data
} else {
// ACKs are encrypted
key := protocol.HandshakeKey
nonce := protocol.HandshakeNonce
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
// Use SharedSecret
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
key, nonce = crypto.GenerateKeyNonce(&pkt.Header, false) // Server->Client=false
}
meta := make([]byte, 3) // Server->Client is 3 bytes
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
meta[2] = pkt.Header.Type
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
if err != nil {
// Try fallback to HandshakeKey if SharedSecret failed
if !bytes.Equal(key, protocol.HandshakeKey[:]) {
log.Printf("ACK SharedSecret decrypt failed, trying HandshakeKey...")
key = protocol.HandshakeKey[:]
nonce = protocol.HandshakeNonce[:]
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
}
if err != nil {
log.Printf("ACK decryption failed (PID=%d): %v", pkt.Header.PacketID, err)
return nil
}
}
}
ackPId := uint16(0)
if len(data) >= 2 {
ackPId = binary.BigEndian.Uint16(data[0:2])
}
log.Printf("Received ACK for PacketID %d (HeaderPID=%d)", ackPId, pkt.Header.PacketID)
// If ACK is for clientek (PID=1), proceed with clientinit
if ackPId == 1 && c.Handshake != nil && c.Handshake.Step == 5 {
log.Println("clientek acknowledged! Sending clientinit...")
c.Handshake.Step = 6
return c.sendClientInit()
}
// If ACK is for clientinit (PID=2), we're connected!
if ackPId == 2 && c.Handshake != nil && c.Handshake.Step == 6 {
log.Println("clientinit acknowledged! Connection established!")
c.Connected = true
}
}
return nil
}
func (c *Client) handleInit(pkt *protocol.Packet) error {
// Determine step based on packet content or local state
// Simple state machine
if c.Handshake.Step == 0 {
if err := c.Handshake.HandlePacket1(pkt); err != nil {
return err
}
log.Println("Handshake Step 1 Completed. Sending Step 2...")
return c.Handshake.SendPacket2()
} else if c.Handshake.Step == 1 {
// Wait, step 1 is processed, we sent step 2.
// We expect Step 3.
if pkt.Data[0] == 0x03 {
if err := c.Handshake.HandlePacket3(pkt); err != nil {
return err
}
log.Println("Handshake Step 3 Completed. Sending Step 4 (Puzzle Solution)...")
if err := c.Handshake.SendPacket4(); err != nil {
return err
}
}
}
return nil
}

146
internal/client/send.go Normal file
View File

@@ -0,0 +1,146 @@
package client
import (
"bytes"
"encoding/binary"
"fmt"
"log"
"go-ts/pkg/protocol"
"github.com/dgryski/go-quicklz"
)
// SendCommand sends a command, splitting it into fragments if it exceeds 500 bytes.
func (c *Client) SendCommand(cmd *protocol.Command) error {
return c.SendCommandString(cmd.Encode())
}
// SendCommandString sends a raw command string with fragmentation.
func (c *Client) SendCommandString(cmdStr string) error {
data := []byte(cmdStr)
maxPacketSize := 500
maxBody := maxPacketSize - 13 // Header is 13 bytes for C->S (MAC 8, PID 2, TYPE 1, CID 2)
pType := protocol.PacketTypeCommand
pFlags := uint8(0)
// ts3j logic: If too large, try compressing
if len(data)+13 > maxPacketSize {
compressed := quicklz.Compress(data, 1)
if len(compressed)+13 < len(data)+13 {
data = compressed
pFlags |= protocol.PacketFlagCompressed
log.Printf("Compressed large command: %d -> %d bytes", len([]byte(cmdStr)), len(data))
}
}
// If still too large (or not compressible), fragment
if len(data)+13 > maxPacketSize {
log.Printf("Fragmenting large command (%d bytes) into %d packets", len(data), (len(data)/maxBody)+1)
for i := 0; i < len(data); i += maxBody {
end := i + maxBody
if end > len(data) {
end = len(data)
}
chunk := data[i:end]
chunkFlags := uint8(0)
// First packet keeps COMPRESSED flag (if set) and gets FRAGMENTED
if i == 0 {
chunkFlags = pFlags | protocol.PacketFlagFragmented
} else if end == len(data) {
// Last packet gets FRAGMENTED
chunkFlags = protocol.PacketFlagFragmented
} else {
// Intermediate packets have NO flags (other than NewProtocol added in sendPacketInternal)
chunkFlags = 0
}
if err := c.sendPacketInternal(chunk, pType, chunkFlags); err != nil {
return err
}
}
return nil
}
// Small enough to send in one go
return c.sendPacketInternal(data, pType, pFlags)
}
// sendPacketInternal handles encryption and low-level header construction for C->S packets.
func (c *Client) sendPacketInternal(data []byte, pType protocol.PacketType, flags uint8) error {
pkt := protocol.NewPacket(pType, data)
c.PacketIDCounterC2S++
pkt.Header.PacketID = c.PacketIDCounterC2S
pkt.Header.ClientID = c.ClientID
pkt.Header.Type |= protocol.PacketFlagNewProtocol | flags
// Encryption
// Use SharedSecret if Step >= 6, else fallback to HandshakeKey
key := protocol.HandshakeKey[:]
nonce := protocol.HandshakeNonce[:]
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
keyArr, nonceArr := crypto.GenerateKeyNonce(&pkt.Header, true) // Client->Server=true
key = keyArr
nonce = nonceArr
}
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
meta[4] = pkt.Header.Type
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
if err != nil {
return fmt.Errorf("encryption failed: %w", err)
}
pkt.Data = encData
copy(pkt.Header.MAC[:], mac)
return c.Conn.SendPacket(pkt)
}
func (c *Client) sendClientInit() error {
// Specialized send for clientinit because it needs PID 2 and uses Map params
params := map[string]string{
"client_nickname": c.Nickname,
"client_version": "3.6.2 [Build: 1690976575]",
"client_platform": "Windows",
"client_input_muted": "0",
"client_output_muted": "0",
"client_outputonly_muted": "0",
"client_input_hardware": "1",
"client_output_hardware": "1",
"client_version_sign": "OyuLO/1bVJtBsXLRWzfGVhNaQd7B9D4QTolZm14DM1uCbSXVvqX3Ssym3sLi/PcvOl+SAUlX6NwBPOsQdwOGDw==",
"client_key_offset": fmt.Sprintf("%d", c.Handshake.IdentityOffset),
"hwid": "1234567890",
}
var buf bytes.Buffer
buf.WriteString("clientinit")
for k, v := range params {
buf.WriteString(" ")
buf.WriteString(k)
if v != "" {
buf.WriteString("=")
buf.WriteString(protocol.Escape(v))
}
}
log.Println("Sending clientinit (Packet 2) [Encrypted]...")
// Reset counter specifically for this sync point
c.PacketIDCounterC2S = 1 // Next will be 2
return c.SendCommandString(buf.String())
}

67
internal/client/voice.go Normal file
View File

@@ -0,0 +1,67 @@
package client
import (
"encoding/binary"
"log"
"go-ts/pkg/protocol"
)
func (c *Client) handleVoice(pkt *protocol.Packet) {
// Parse Voice Header (Server -> Client)
// VID(2) + CID(2) + Codec(1) + Data
if len(pkt.Data) < 5 {
return
}
vid := binary.BigEndian.Uint16(pkt.Data[0:2])
// cid := binary.BigEndian.Uint16(pkt.Data[2:4]) // Talking client ID (not needed for echo)
codec := pkt.Data[4]
voiceData := pkt.Data[5:]
log.Printf("Voice Packet received. VID=%d, Codec=%d, Size=%d", vid, codec, len(voiceData))
// Build echo packet (Client -> Server)
// Format: VID(2) + Codec(1) + Data
echoData := make([]byte, 2+1+len(voiceData))
binary.BigEndian.PutUint16(echoData[0:2], vid)
echoData[2] = codec
copy(echoData[3:], voiceData)
echoPkt := protocol.NewPacket(protocol.PacketTypeVoice, echoData)
echoPkt.Header.PacketID = pkt.Header.PacketID // Use same ID for voice
echoPkt.Header.ClientID = c.ClientID
// Encrypt voice packet with SharedSecret
if c.Handshake != nil && len(c.Handshake.SharedIV) > 0 {
crypto := &protocol.CryptoState{
SharedIV: c.Handshake.SharedIV,
SharedMac: c.Handshake.SharedMac,
GenerationID: 0,
}
key, nonce := crypto.GenerateKeyNonce(&echoPkt.Header, true)
// Meta for Client->Server: PID(2) + CID(2) + PT(1)
meta := make([]byte, 5)
binary.BigEndian.PutUint16(meta[0:2], echoPkt.Header.PacketID)
binary.BigEndian.PutUint16(meta[2:4], echoPkt.Header.ClientID)
meta[4] = echoPkt.Header.Type
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, echoPkt.Data)
if err != nil {
log.Printf("Voice encryption failed: %v", err)
return
}
echoPkt.Data = encData
copy(echoPkt.Header.MAC[:], mac)
} else {
// If no encryption keys, use SharedMac if available, otherwise HandshakeMac
if c.Handshake != nil && len(c.Handshake.SharedMac) > 0 {
copy(echoPkt.Header.MAC[:], c.Handshake.SharedMac)
} else {
echoPkt.Header.MAC = protocol.HandshakeMac
}
}
c.Conn.SendPacket(echoPkt)
}

View File

@@ -57,3 +57,34 @@ func Escape(s string) string {
)
return r.Replace(s)
}
// Command represents a TeamSpeak 3 command for building/encoding
type Command struct {
Name string
Params map[string]string
}
func NewCommand(name string) *Command {
return &Command{
Name: name,
Params: make(map[string]string),
}
}
func (c *Command) AddParam(key, value string) {
c.Params[key] = value
}
func (c *Command) Encode() string {
var sb strings.Builder
sb.WriteString(c.Name)
for k, v := range c.Params {
sb.WriteString(" ")
sb.WriteString(k)
if v != "" {
sb.WriteString("=")
sb.WriteString(Escape(v))
}
}
return sb.String()
}