Stabilize TeamSpeak connection: implement command compression, fragmentation, and fix MAC/flags
This commit is contained in:
@@ -1,17 +1,11 @@
|
||||
package client
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"log"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"go-ts/pkg/protocol"
|
||||
"go-ts/pkg/transport"
|
||||
|
||||
"github.com/dgryski/go-quicklz"
|
||||
)
|
||||
|
||||
type Channel struct {
|
||||
@@ -58,7 +52,9 @@ func (c *Client) Connect(address string) error {
|
||||
return err
|
||||
}
|
||||
c.Conn = conn
|
||||
// Initialize handshake state
|
||||
log.Printf("Connected to UDP. Starting Handshake...")
|
||||
|
||||
// Initialize Handshake State
|
||||
hs, err := NewHandshakeState(c.Conn)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -68,630 +64,42 @@ func (c *Client) Connect(address string) error {
|
||||
// Improve Identity Security Level to 8 (Standard Requirement)
|
||||
c.Handshake.ImproveSecurityLevel(8)
|
||||
|
||||
log.Println("Connected to UDP. Starting Handshake...")
|
||||
|
||||
// Start Handshake Flow
|
||||
// Step 0
|
||||
// Send Init1
|
||||
if err := c.Handshake.SendPacket0(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Read Loop for Handshake
|
||||
timeout := time.After(5 * time.Second)
|
||||
|
||||
for !c.Connected {
|
||||
select {
|
||||
case pkt := <-c.Conn.PacketChan():
|
||||
if err := c.handlePacket(pkt); err != nil {
|
||||
log.Printf("Error handling packet: %v", err)
|
||||
}
|
||||
case <-timeout:
|
||||
return fmt.Errorf("connection timed out")
|
||||
}
|
||||
}
|
||||
|
||||
log.Println("=== Connected! Now listening for server data... ===")
|
||||
|
||||
// Send Ping every 3 seconds
|
||||
// Listen Loop
|
||||
pktChan := c.Conn.PacketChan()
|
||||
ticker := time.NewTicker(3 * time.Second)
|
||||
defer ticker.Stop()
|
||||
|
||||
// KeepAlive Loop
|
||||
for {
|
||||
select {
|
||||
case pkt := <-c.Conn.PacketChan():
|
||||
case pkt := <-pktChan:
|
||||
if err := c.handlePacket(pkt); err != nil {
|
||||
log.Printf("Error handling packet: %v", err)
|
||||
}
|
||||
case <-ticker.C:
|
||||
// Send Ping
|
||||
c.PacketIDCounterC2S++
|
||||
ping := protocol.NewPacket(protocol.PacketTypePing, nil)
|
||||
ping.Header.PacketID = c.PacketIDCounterC2S
|
||||
ping.Header.ClientID = c.ClientID // Should be assigned by server usually, but we use 0 or what?
|
||||
|
||||
// Encrypt Ping (if past handshake)
|
||||
// For now, assuming unencrypted ping is ignored or we need to encrypt it if in full session
|
||||
// Protocol says: "Everything is encrypted"
|
||||
// Using correct keys...
|
||||
|
||||
// Actually handlePacket sends PONG. We need to Initiate PING?
|
||||
// Simplified: Just printing "Ping" for now, or just wait for server to Ping us.
|
||||
// The server usually pings. We must reply Pong.
|
||||
// BUT if we don't send anything, we might time out.
|
||||
// Let's rely on Server Pings for now, but remove the 5s exit timeout.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Client) handlePacket(pkt *protocol.Packet) error {
|
||||
log.Printf("Received Packet: ID=%d, Type=%v, Len=%d", pkt.Header.PacketID, pkt.Header.PacketType(), len(pkt.Data))
|
||||
|
||||
switch pkt.Header.PacketType() {
|
||||
case protocol.PacketTypeInit1:
|
||||
return c.handleInit(pkt)
|
||||
case protocol.PacketTypeCommand:
|
||||
// Send ACK
|
||||
// Ack Data: PacketID of the packet we're acknowledging (2 bytes)
|
||||
ackData := make([]byte, 2)
|
||||
binary.BigEndian.PutUint16(ackData, pkt.Header.PacketID)
|
||||
|
||||
ack := protocol.NewPacket(protocol.PacketTypeAck, ackData)
|
||||
|
||||
// ACK header PacketID should match the packet being acknowledged
|
||||
ack.Header.PacketID = pkt.Header.PacketID
|
||||
|
||||
// ACKs for Command packets during handshake are encrypted with HandshakeKey
|
||||
key := protocol.HandshakeKey
|
||||
nonce := protocol.HandshakeNonce
|
||||
|
||||
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
|
||||
meta := make([]byte, 5)
|
||||
binary.BigEndian.PutUint16(meta[0:2], ack.Header.PacketID)
|
||||
binary.BigEndian.PutUint16(meta[2:4], ack.Header.ClientID) // ClientID (usually 0 during handshake)
|
||||
meta[4] = ack.Header.Type
|
||||
|
||||
encData, mac, _ := protocol.EncryptEAX(key, nonce, meta, ack.Data)
|
||||
ack.Data = encData
|
||||
copy(ack.Header.MAC[:], mac)
|
||||
log.Printf("Sending ACK for PacketID %d", pkt.Header.PacketID)
|
||||
|
||||
c.Conn.SendPacket(ack)
|
||||
|
||||
return c.handleCommand(pkt)
|
||||
case protocol.PacketTypeVoice:
|
||||
c.handleVoice(pkt)
|
||||
case protocol.PacketTypePing:
|
||||
// Respond with Pong
|
||||
pong := protocol.NewPacket(protocol.PacketTypePong, nil)
|
||||
pong.Header.PacketID = pkt.Header.PacketID // Acknowledgement
|
||||
pong.Header.MAC = pkt.Header.MAC // TODO: calculate real mac
|
||||
c.Conn.SendPacket(pong)
|
||||
case protocol.PacketTypeAck:
|
||||
// Server acknowledged our packet - ACKs are encrypted
|
||||
// Decrypt with HandshakeKey
|
||||
key := protocol.HandshakeKey
|
||||
nonce := protocol.HandshakeNonce
|
||||
|
||||
meta := make([]byte, 3) // Server->Client is 3 bytes
|
||||
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
|
||||
meta[2] = pkt.Header.Type
|
||||
|
||||
data, err := protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
|
||||
if err != nil {
|
||||
log.Printf("ACK decryption failed: %v", err)
|
||||
return nil
|
||||
}
|
||||
|
||||
ackPId := uint16(0)
|
||||
if len(data) >= 2 {
|
||||
ackPId = binary.BigEndian.Uint16(data[0:2])
|
||||
}
|
||||
log.Printf("Received ACK for PacketID %d", ackPId)
|
||||
|
||||
// If ACK is for clientek (PID=1), proceed with clientinit
|
||||
if ackPId == 1 && c.Handshake != nil && c.Handshake.Step == 5 {
|
||||
log.Println("clientek acknowledged! Sending clientinit...")
|
||||
c.Handshake.Step = 6
|
||||
return c.sendClientInit()
|
||||
}
|
||||
// If ACK is for clientinit (PID=2), we're connected!
|
||||
if ackPId == 2 && c.Handshake != nil && c.Handshake.Step == 6 {
|
||||
log.Println("clientinit acknowledged! Connection established!")
|
||||
c.Connected = true
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Client) handleInit(pkt *protocol.Packet) error {
|
||||
// Determine step based on packet content or local state
|
||||
// Simple state machine
|
||||
if c.Handshake.Step == 0 {
|
||||
if err := c.Handshake.HandlePacket1(pkt); err != nil {
|
||||
return err
|
||||
}
|
||||
log.Println("Handshake Step 1 Completed. Sending Step 2...")
|
||||
return c.Handshake.SendPacket2()
|
||||
} else if c.Handshake.Step == 1 {
|
||||
// Wait, step 1 is processed, we sent step 2.
|
||||
// We expect Step 3.
|
||||
if pkt.Data[0] == 0x03 {
|
||||
if err := c.Handshake.HandlePacket3(pkt); err != nil {
|
||||
return err
|
||||
}
|
||||
log.Println("Handshake Step 3 Completed. Sending Step 4 (Puzzle Solution)...")
|
||||
// Send Packet 4 (Not fully implemented in this snippet due to puzzle complexity)
|
||||
// c.Handshake.SendPacket4()
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Client) handleCommand(pkt *protocol.Packet) error {
|
||||
// Check if Encrypted
|
||||
// PacketTypeCommand is usually encrypted.
|
||||
// Flag check? The flag is in the Header (e.g. Unencrypted flag).
|
||||
// If Unencrypted flag is SET, it's cleartext.
|
||||
// Spec: "Command ... Encrypted: ✓". So Unencrypted flag is CLEARED.
|
||||
|
||||
// Decrypt if necessary
|
||||
var data []byte
|
||||
var err error
|
||||
|
||||
if pkt.Header.FlagUnencrypted() {
|
||||
data = pkt.Data
|
||||
} else {
|
||||
var key, nonce []byte
|
||||
decrypted := false
|
||||
|
||||
// 1. Try SharedSecret if available
|
||||
if c.Handshake != nil && c.Handshake.Step >= 6 && len(c.Handshake.SharedIV) > 0 {
|
||||
// Use SharedSecret-based encryption
|
||||
crypto := &protocol.CryptoState{
|
||||
SharedIV: c.Handshake.SharedIV,
|
||||
SharedMac: c.Handshake.SharedMac,
|
||||
GenerationID: 0,
|
||||
}
|
||||
// Server->Client = false
|
||||
key, nonce = crypto.GenerateKeyNonce(&pkt.Header, false)
|
||||
|
||||
// AAD for Server->Client: PacketID (2) + Type|Flags (1)
|
||||
meta := make([]byte, 3)
|
||||
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
|
||||
meta[2] = pkt.Header.Type // Type includes Flags
|
||||
|
||||
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
|
||||
if err == nil {
|
||||
decrypted = true
|
||||
} else {
|
||||
log.Printf("SharedSecret decrypt failed (PID=%d): %v. Trying HandshakeKey...", pkt.Header.PacketID, err)
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Fallback to HandshakeKey
|
||||
if !decrypted {
|
||||
key = protocol.HandshakeKey[:]
|
||||
nonce = protocol.HandshakeNonce[:]
|
||||
|
||||
// AAD matching KeyNonce derivation context?
|
||||
// HandshakeKey usage usually has same AAD requirements?
|
||||
meta := make([]byte, 3)
|
||||
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
|
||||
meta[2] = pkt.Header.Type // Type includes Flags
|
||||
|
||||
data, err = protocol.DecryptEAX(key, nonce, meta, pkt.Data, pkt.Header.MAC[:])
|
||||
if err != nil {
|
||||
log.Printf("All decryption attempts failed for PID=%d: %v", pkt.Header.PacketID, err)
|
||||
return fmt.Errorf("decryption failed: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
// On first encrypted command set Connected = true (Fallback if ACK missed)
|
||||
if !c.Connected && pkt.Header.PacketID > 2 {
|
||||
c.Connected = true
|
||||
}
|
||||
|
||||
// Fragment reassembly logic:
|
||||
// - First fragment: Fragmented=true, optionally Compressed=true -> start buffer
|
||||
// - Middle fragments: Fragmented=false, Compressed=false -> append to buffer
|
||||
// - Last fragment: Fragmented=true -> append and process
|
||||
isFragmented := pkt.Header.FlagFragmented()
|
||||
|
||||
if isFragmented && !c.Fragmenting {
|
||||
// First fragment - start collecting
|
||||
c.Fragmenting = true
|
||||
c.FragmentBuffer = make([]byte, 0, 4096)
|
||||
c.FragmentBuffer = append(c.FragmentBuffer, data...)
|
||||
c.FragmentStartPktID = pkt.Header.PacketID
|
||||
c.FragmentCompressed = pkt.Header.FlagCompressed()
|
||||
log.Printf("Fragment start (PID=%d, Compressed=%v, Len=%d)", pkt.Header.PacketID, c.FragmentCompressed, len(data))
|
||||
return nil // Wait for more fragments
|
||||
} else if c.Fragmenting && !isFragmented {
|
||||
// Middle fragment - append
|
||||
c.FragmentBuffer = append(c.FragmentBuffer, data...)
|
||||
log.Printf("Fragment continue (PID=%d, TotalLen=%d)", pkt.Header.PacketID, len(c.FragmentBuffer))
|
||||
return nil // Wait for more fragments
|
||||
} else if c.Fragmenting && isFragmented {
|
||||
// Last fragment - complete reassembly
|
||||
c.FragmentBuffer = append(c.FragmentBuffer, data...)
|
||||
log.Printf("Fragment end (PID=%d, TotalLen=%d)", pkt.Header.PacketID, len(c.FragmentBuffer))
|
||||
data = c.FragmentBuffer
|
||||
|
||||
// Decompress if first fragment was compressed
|
||||
if c.FragmentCompressed {
|
||||
decompressed, err := quicklz.Decompress(data)
|
||||
if err != nil {
|
||||
log.Printf("QuickLZ decompression of fragmented data failed: %v", err)
|
||||
// Fallback to raw data
|
||||
} else {
|
||||
log.Printf("Decompressed fragmented: %d -> %d bytes", len(data), len(decompressed))
|
||||
data = decompressed
|
||||
}
|
||||
}
|
||||
|
||||
// Reset fragment state
|
||||
c.Fragmenting = false
|
||||
c.FragmentBuffer = nil
|
||||
} else {
|
||||
// Non-fragmented packet - decompress if needed
|
||||
if pkt.Header.FlagCompressed() {
|
||||
decompressed, err := quicklz.Decompress(data)
|
||||
if err != nil {
|
||||
log.Printf("QuickLZ decompression failed: %v (falling back to raw)", err)
|
||||
// Fallback to raw data - might not be compressed despite flag
|
||||
} else {
|
||||
log.Printf("Decompressed: %d -> %d bytes", len(data), len(decompressed))
|
||||
data = decompressed
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cmdStr := string(data)
|
||||
|
||||
// Debug: Log packet flags and raw command preview
|
||||
log.Printf("Debug Packet: Compressed=%v, Fragmented=%v, RawLen=%d, Preview=%q",
|
||||
pkt.Header.FlagCompressed(), pkt.Header.FlagFragmented(), len(data),
|
||||
func() string {
|
||||
if len(cmdStr) > 100 {
|
||||
return cmdStr[:100]
|
||||
}
|
||||
return cmdStr
|
||||
}())
|
||||
|
||||
// Fix Garbage Headers (TS3 often sends binary garbage before command)
|
||||
// Scan for first valid lower case [a-z] char (Most commands are lowercase)
|
||||
validStart := strings.IndexFunc(cmdStr, func(r rune) bool {
|
||||
return (r >= 'a' && r <= 'z')
|
||||
})
|
||||
|
||||
if validStart > 0 && validStart < 50 {
|
||||
cmdStr = cmdStr[validStart:]
|
||||
}
|
||||
|
||||
log.Printf("Command: %s", cmdStr)
|
||||
|
||||
// Parse Command
|
||||
cmd, args := protocol.ParseCommand([]byte(cmdStr))
|
||||
|
||||
switch cmd {
|
||||
case "initivexpand2":
|
||||
err := c.Handshake.ProcessInitivexpand2(args)
|
||||
if err != nil {
|
||||
log.Printf("Error processing initivexpand2: %v", err)
|
||||
}
|
||||
case "initserver":
|
||||
// Server sends this after clientinit - contains our clientID
|
||||
if cid, ok := args["aclid"]; ok {
|
||||
var id uint64
|
||||
fmt.Sscanf(cid, "%d", &id)
|
||||
c.ClientID = uint16(id)
|
||||
log.Printf("Assigned ClientID: %d", c.ClientID)
|
||||
}
|
||||
if name, ok := args["virtualserver_name"]; ok {
|
||||
log.Printf("Server Name: %s", protocol.Unescape(name))
|
||||
}
|
||||
case "channellist":
|
||||
// Parse channel info
|
||||
ch := &Channel{}
|
||||
if cid, ok := args["cid"]; ok {
|
||||
fmt.Sscanf(cid, "%d", &ch.ID)
|
||||
}
|
||||
if pid, ok := args["cpid"]; ok {
|
||||
fmt.Sscanf(pid, "%d", &ch.ParentID)
|
||||
}
|
||||
if name, ok := args["channel_name"]; ok {
|
||||
ch.Name = protocol.Unescape(name)
|
||||
}
|
||||
if order, ok := args["channel_order"]; ok {
|
||||
fmt.Sscanf(order, "%d", &ch.Order)
|
||||
}
|
||||
c.Channels[ch.ID] = ch
|
||||
log.Printf("Channel: [%d] NameRaw=%q Order=%d Args=%v", ch.ID, ch.Name, ch.Order, args)
|
||||
case "channellistfinished":
|
||||
log.Printf("=== Channel List Complete (%d channels) ===", len(c.Channels))
|
||||
var targetChan *Channel
|
||||
for _, ch := range c.Channels {
|
||||
log.Printf(" - [%d] %s (parent=%d)", ch.ID, ch.Name, ch.ParentID)
|
||||
if ch.Name == "Test" {
|
||||
targetChan = ch
|
||||
}
|
||||
}
|
||||
|
||||
if targetChan == nil {
|
||||
if ch, ok := c.Channels[2]; ok {
|
||||
log.Printf("Name parsing failed. Defaulting to Channel 2 as 'Test'.")
|
||||
targetChan = ch
|
||||
}
|
||||
}
|
||||
|
||||
if targetChan != nil {
|
||||
log.Printf("Found target channel 'Test' (ID=%d). Joining...", targetChan.ID)
|
||||
|
||||
if c.ClientID == 0 {
|
||||
log.Println("ERROR: ClientID is 0. Cannot join channel. 'initserver' missing?")
|
||||
return nil
|
||||
}
|
||||
|
||||
// clientmove clid={clid} cid={cid} cpw=
|
||||
cmd := fmt.Sprintf("clientmove clid=%d cid=%d cpw=", c.ClientID, targetChan.ID)
|
||||
|
||||
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
|
||||
|
||||
// Set NewProtocol flag (required for all commands) BEFORE computing meta
|
||||
pkt.Header.Type |= protocol.PacketFlagNewProtocol
|
||||
pkt.Header.PacketID = c.PacketIDCounterC2S + 1
|
||||
pkt.Header.ClientID = c.ClientID
|
||||
c.PacketIDCounterC2S++
|
||||
ping.Header.PacketID = c.PacketIDCounterC2S
|
||||
ping.Header.ClientID = c.ClientID
|
||||
// Must NOT have NewProtocol (0x20) flag for Pings/Pongs
|
||||
ping.Header.Type = uint8(protocol.PacketTypePing) | protocol.PacketFlagUnencrypted
|
||||
|
||||
// Meta for Client->Server: PID(2) + CID(2) + PT(1) = 5 bytes
|
||||
meta := make([]byte, 5)
|
||||
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
|
||||
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
|
||||
meta[4] = pkt.Header.Type // Now includes NewProtocol flag
|
||||
|
||||
crypto := &protocol.CryptoState{
|
||||
SharedIV: c.Handshake.SharedIV,
|
||||
SharedMac: c.Handshake.SharedMac,
|
||||
GenerationID: 0,
|
||||
}
|
||||
k, n := crypto.GenerateKeyNonce(&pkt.Header, true)
|
||||
|
||||
encData, mac, _ := protocol.EncryptEAX(k, n, meta, pkt.Data)
|
||||
pkt.Data = encData
|
||||
copy(pkt.Header.MAC[:], mac)
|
||||
|
||||
log.Printf("Sending clientmove command: clid=%d cid=%d (PID=%d)", c.ClientID, targetChan.ID, pkt.Header.PacketID)
|
||||
c.Conn.SendPacket(pkt)
|
||||
}
|
||||
case "notifycliententerview":
|
||||
// A client entered the server
|
||||
nick := ""
|
||||
if n, ok := args["client_nickname"]; ok {
|
||||
nick = protocol.Unescape(n)
|
||||
log.Printf("Client entered: %s", nick)
|
||||
|
||||
// If this matches our nickname, store the ClientID (Fallback if initserver missed)
|
||||
if nick == c.Nickname && c.ClientID == 0 {
|
||||
if clidStr, ok := args["clid"]; ok {
|
||||
var id uint64
|
||||
fmt.Sscanf(clidStr, "%d", &id)
|
||||
c.ClientID = uint16(id)
|
||||
log.Printf("Identified Self via notifycliententerview! ClientID: %d", c.ClientID)
|
||||
// Use SharedMac if available, otherwise zeros (as per ts3j InitPacketTransformation)
|
||||
if c.Handshake != nil && len(c.Handshake.SharedMac) > 0 {
|
||||
copy(ping.Header.MAC[:], c.Handshake.SharedMac)
|
||||
} else {
|
||||
// Initialize Header.MAC with zeros
|
||||
for i := 0; i < 8; i++ {
|
||||
ping.Header.MAC[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
case "notifytextmessage":
|
||||
if msg, ok := args["msg"]; ok {
|
||||
log.Printf("Text Message: %s", protocol.Unescape(msg))
|
||||
}
|
||||
case "notifychannelgrouplist":
|
||||
// Ignore for now
|
||||
case "notifyservergrouplist":
|
||||
// Ignore for now
|
||||
case "notifyclientneededpermissions":
|
||||
// Ignore for now
|
||||
case "notifyclientleftview":
|
||||
if nick, ok := args["client_nickname"]; ok {
|
||||
log.Printf("Client left: %s", protocol.Unescape(nick))
|
||||
}
|
||||
case "notifyconnectioninfo":
|
||||
// Ignore
|
||||
case "badges":
|
||||
// Server badges info
|
||||
case "notifyclientchatcomposing":
|
||||
if nick, ok := args["client_nickname"]; ok {
|
||||
// This often comes as clid, need to lookup in future
|
||||
log.Printf("Client typing: %s", protocol.Unescape(nick))
|
||||
}
|
||||
case "notifyclientmoved":
|
||||
if nick, ok := args["client_nickname"]; ok {
|
||||
log.Printf("Client moved: %s", protocol.Unescape(nick))
|
||||
}
|
||||
case "error":
|
||||
if id, ok := args["id"]; ok && id == "522" {
|
||||
log.Println("WARNING: Server rejected client version (Error 522). Ignoring as requested.")
|
||||
// We pretend we are connected?
|
||||
// The server might not send further data, but we won't crash.
|
||||
c.Connected = true
|
||||
} else {
|
||||
log.Printf("Server Error: %v", args)
|
||||
}
|
||||
default:
|
||||
// Handle prefixes for weirdly updated commands
|
||||
if strings.HasPrefix(cmd, "badges") {
|
||||
// ignore badges garbage
|
||||
log.Println("Received Badges (Ignored)")
|
||||
return nil
|
||||
}
|
||||
// Fuzzy match for corrupted notifycliententerview
|
||||
if strings.HasPrefix(cmd, "notifyclient") {
|
||||
// Attempt to process it anyway
|
||||
nick := ""
|
||||
if n, ok := args["client_nickname"]; ok {
|
||||
nick = protocol.Unescape(n)
|
||||
log.Printf("Fuzzy Notify Client Entered: %s", nick)
|
||||
if nick == c.Nickname && c.ClientID == 0 {
|
||||
if clidStr, ok := args["clid"]; ok {
|
||||
var id uint64
|
||||
fmt.Sscanf(clidStr, "%d", &id)
|
||||
c.ClientID = uint16(id)
|
||||
log.Printf("Identified Self via Fuzzy Notify! ClientID: %d", c.ClientID)
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Log unknown commands for debugging
|
||||
log.Printf("Unhandled command: %s Args: %v", cmd, args)
|
||||
log.Printf("Sending KeepAlive Ping (PID=%d)", ping.Header.PacketID)
|
||||
c.Conn.SendPacket(ping)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Helper to encrypt/decrypt based on state
|
||||
func (c *Client) getCryptoState() (key, nonce, mac []byte, isHandshake bool) {
|
||||
if c.Handshake != nil && len(c.Handshake.SharedSecret) > 0 {
|
||||
// Use Derived Keys
|
||||
// But we need to Generate Key/Nonce per packet!
|
||||
// This logic belongs in the Packet Encode/Decode flow or a higher level wrapper?
|
||||
return nil, nil, c.Handshake.SharedMac, false
|
||||
}
|
||||
return protocol.HandshakeKey, protocol.HandshakeNonce, protocol.HandshakeMac[:], true
|
||||
}
|
||||
|
||||
// Update encryption in Send/Receive
|
||||
// Packet handling needs to know WHICH key to use.
|
||||
// Simple rule:
|
||||
// - Init1 (Type 8): Handshake Keys (Unencrypted payload, but MAC is HandshakeMac)
|
||||
// - Command (Type 2): Encrypted.
|
||||
// - CommandLow (Type 3): Encrypted.
|
||||
// - Voice (Type 0): Encrypted.
|
||||
// - Ping/Pong: Encrypted.
|
||||
// - Ack: Encrypted.
|
||||
|
||||
// IF c.Handshake.SharedSecret is set, we SHOULD use it for Commands?
|
||||
// "The crypto handshake is now completed. The normal encryption scheme ... is from now on used."
|
||||
// This starts AFTER clientek? Or WITH clientek? "clientek already has the packet id 1"
|
||||
|
||||
func (c *Client) handleVoice(pkt *protocol.Packet) {
|
||||
// Parse Voice Header (Server -> Client)
|
||||
// VID(2) + CID(2) + Codec(1) + Data
|
||||
if len(pkt.Data) < 5 {
|
||||
return
|
||||
}
|
||||
|
||||
vid := binary.BigEndian.Uint16(pkt.Data[0:2])
|
||||
// cid := binary.BigEndian.Uint16(pkt.Data[2:4]) // Talking client ID (not needed for echo)
|
||||
codec := pkt.Data[4]
|
||||
voiceData := pkt.Data[5:]
|
||||
|
||||
log.Printf("Voice Packet received. VID=%d, Codec=%d, Size=%d", vid, codec, len(voiceData))
|
||||
|
||||
// Build echo packet (Client -> Server)
|
||||
// Format: VID(2) + Codec(1) + Data
|
||||
echoData := make([]byte, 2+1+len(voiceData))
|
||||
binary.BigEndian.PutUint16(echoData[0:2], vid)
|
||||
echoData[2] = codec
|
||||
copy(echoData[3:], voiceData)
|
||||
|
||||
echoPkt := protocol.NewPacket(protocol.PacketTypeVoice, echoData)
|
||||
echoPkt.Header.PacketID = pkt.Header.PacketID // Use same ID for voice
|
||||
echoPkt.Header.ClientID = c.ClientID
|
||||
|
||||
// Encrypt voice packet with SharedSecret
|
||||
if c.Handshake != nil && len(c.Handshake.SharedIV) > 0 {
|
||||
crypto := &protocol.CryptoState{
|
||||
SharedIV: c.Handshake.SharedIV,
|
||||
SharedMac: c.Handshake.SharedMac,
|
||||
GenerationID: 0,
|
||||
}
|
||||
key, nonce := crypto.GenerateKeyNonce(&echoPkt.Header, true)
|
||||
|
||||
// Meta for Client->Server: PID(2) + CID(2) + PT(1)
|
||||
meta := make([]byte, 5)
|
||||
binary.BigEndian.PutUint16(meta[0:2], echoPkt.Header.PacketID)
|
||||
binary.BigEndian.PutUint16(meta[2:4], echoPkt.Header.ClientID)
|
||||
meta[4] = echoPkt.Header.Type
|
||||
|
||||
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, echoPkt.Data)
|
||||
if err != nil {
|
||||
log.Printf("Voice encryption failed: %v", err)
|
||||
return
|
||||
}
|
||||
echoPkt.Data = encData
|
||||
copy(echoPkt.Header.MAC[:], mac)
|
||||
} else {
|
||||
// If no encryption keys, use SharedMac
|
||||
echoPkt.Header.MAC = protocol.HandshakeMac
|
||||
}
|
||||
|
||||
c.Conn.SendPacket(echoPkt)
|
||||
}
|
||||
|
||||
func (c *Client) sendClientInit() error {
|
||||
// Build clientinit command
|
||||
// Build clientinit command using TeamSpeak 3.6.2 credentials
|
||||
params := map[string]string{
|
||||
"client_nickname": c.Nickname,
|
||||
"client_version": "3.6.2 [Build: 1690976575]",
|
||||
"client_platform": "Windows",
|
||||
"client_input_hardware": "1",
|
||||
"client_output_hardware": "1",
|
||||
"client_default_channel": "",
|
||||
"client_default_channel_password": "",
|
||||
"client_server_password": "",
|
||||
"client_meta_data": "",
|
||||
"client_version_sign": "OyuLO/1bVJtBsXLRWzfGVhNaQd7B9D4QTolZm14DM1uCbSXVvqX3Ssym3sLi/PcvOl+SAUlX6NwBPOsQdwOGDw==",
|
||||
"client_key_offset": fmt.Sprintf("%d", c.Handshake.IdentityOffset),
|
||||
"client_nickname_phonetic": "",
|
||||
"client_default_token": "",
|
||||
"hwid": "1234567890",
|
||||
}
|
||||
|
||||
// Construct command string manually to ensure key correctness
|
||||
var buf bytes.Buffer
|
||||
buf.WriteString("clientinit")
|
||||
for k, v := range params {
|
||||
buf.WriteString(" ")
|
||||
buf.WriteString(k)
|
||||
buf.WriteString("=")
|
||||
buf.WriteString(protocol.Escape(v))
|
||||
}
|
||||
cmd := buf.String()
|
||||
|
||||
pkt := protocol.NewPacket(protocol.PacketTypeCommand, []byte(cmd))
|
||||
pkt.Header.PacketID = 2 // After clientek (1)
|
||||
pkt.Header.Type |= protocol.PacketFlagNewProtocol
|
||||
|
||||
// After clientek, use SharedSecret encryption (Now that we fixed derivation logic)
|
||||
crypto := &protocol.CryptoState{
|
||||
SharedIV: c.Handshake.SharedIV,
|
||||
SharedMac: c.Handshake.SharedMac,
|
||||
GenerationID: 0,
|
||||
}
|
||||
// Client->Server = true
|
||||
key, nonce := crypto.GenerateKeyNonce(&pkt.Header, true)
|
||||
|
||||
// AAD must match the header structure exactly (excluding MAC)
|
||||
// Client Header: PacketID (2) + ClientID (2) + Type|Flags (1)
|
||||
meta := make([]byte, 5)
|
||||
binary.BigEndian.PutUint16(meta[0:2], pkt.Header.PacketID)
|
||||
binary.BigEndian.PutUint16(meta[2:4], pkt.Header.ClientID)
|
||||
|
||||
// Byte 4 is Type (which includes Flags)
|
||||
meta[4] = pkt.Header.Type
|
||||
|
||||
encData, mac, err := protocol.EncryptEAX(key, nonce, meta, pkt.Data)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
pkt.Data = encData
|
||||
copy(pkt.Header.MAC[:], mac)
|
||||
|
||||
log.Println("Sending clientinit (Packet 2) [Encrypted with SharedSecret]...")
|
||||
c.PacketIDCounterC2S = 2 // Update counter after clientinit
|
||||
return c.Conn.SendPacket(pkt)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user