Files
go-ts/pkg/audio/biquad.go
Jose Luis Montañes Ojados be929ce55a
Some checks failed
Build and Release / build-linux (push) Failing after 33s
Build and Release / build-windows (push) Failing after 4m2s
Build and Release / release (push) Has been skipped
feat(audio): optimize equalizer with stereo support and gain caching
2026-01-17 20:49:16 +01:00

136 lines
3.7 KiB
Go

package audio
import (
"github.com/moutend/go-equalizer/pkg/equalizer"
)
// EQChain manages a cascade of filters using go-equalizer library
// Now supports Stereo processing (Left/Right)
// EQChain manages a cascade of filters using go-equalizer library
// Now supports Stereo processing (Left/Right)
type EQChain struct {
FiltersLeft []*equalizer.Filter
FiltersRight []*equalizer.Filter
buffer []float64 // Reusable scratch buffer for processing
currentGains []float64 // Cache of current gain values
}
// NewEQChain creates the standard 5-band EQ chain (Stereo)
func NewEQChain(sampleRate float64) *EQChain {
// Standard bands: 100, 350, 1000, 3000, 8000
// Width = 1.0 (approx 1 octave)
createChain := func() []*equalizer.Filter {
f1 := equalizer.NewPeaking(sampleRate, 100, 1.0, 0)
f2 := equalizer.NewPeaking(sampleRate, 350, 1.0, 0)
f3 := equalizer.NewPeaking(sampleRate, 1000, 1.0, 0)
f4 := equalizer.NewPeaking(sampleRate, 3000, 1.0, 0)
f5 := equalizer.NewPeaking(sampleRate, 8000, 1.0, 0)
return []*equalizer.Filter{f1, f2, f3, f4, f5}
}
return &EQChain{
FiltersLeft: createChain(),
FiltersRight: createChain(),
buffer: make([]float64, 1920), // Pre-allocate for Stereo 20ms frame (960*2)
currentGains: make([]float64, 5), // Initialize cache with 0.0
}
}
// SetGain sets the gain for a specific band index (0-4)
func (e *EQChain) SetGain(bandIdx int, dbGain float64) {
if bandIdx < 0 || bandIdx >= 5 {
return
}
// Optimization: If gain hasn't changed, DO NOT recreate filter.
// Recreating the filter resets its internal history state (bi-quad delay buffers),
// causing audible clicks/pops (discontinuities) at every 20ms frame boundary.
const epsilon = 0.001
if delta := dbGain - e.currentGains[bandIdx]; delta > -epsilon && delta < epsilon {
return
}
rate := 48000.0 // Assuming fixed rate for now
// Frequencies map to our standard bands
freqs := []float64{100, 350, 1000, 3000, 8000}
// Create new filter with updated gain
// We use width=1.0 consistent with constructor
// Update BOTH Left and Right to keep balance
e.FiltersLeft[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
e.FiltersRight[bandIdx] = equalizer.NewPeaking(rate, freqs[bandIdx], 1.0, dbGain)
// Update cache
e.currentGains[bandIdx] = dbGain
}
// Reset clears history of all filters
func (e *EQChain) Reset() {
// The library does not expose a Reset method.
}
// Process processes a slice of samples (Interleaved Stereo)
func (e *EQChain) Process(samples []int16) []int16 {
// Grow buffer if needed
if cap(e.buffer) < len(samples) {
e.buffer = make([]float64, len(samples))
}
e.buffer = e.buffer[:len(samples)]
// Float conversion with normalization (-1.0 to 1.0)
// We also apply a slight pre-attenuation (Headroom) to avoid clipping when boosting EQ.
// -3dB = 0.707
const headroom = 0.707
const norm = 1.0 / 32768.0
for i, s := range samples {
e.buffer[i] = float64(s) * norm * headroom
}
// Filter processing
// Input is assumed to be Interleaved Stereo: L, R, L, R...
// We iterate by 2 to process pairs.
for i := 0; i < len(e.buffer); i += 2 {
if i+1 >= len(e.buffer) {
break
}
valL := e.buffer[i]
valR := e.buffer[i+1]
// Run through LEFT chain
for _, f := range e.FiltersLeft {
valL = f.Apply(valL)
}
// Run through RIGHT chain
for _, f := range e.FiltersRight {
valR = f.Apply(valR)
}
// Write back to buffer
e.buffer[i] = valL
e.buffer[i+1] = valR
}
// Convert back to int16
for i, val := range e.buffer {
// Denormalize
val = val * 32767.0
// Hard clipping
if val > 32767 {
val = 32767
} else if val < -32768 {
val = -32768
}
// Write back directly to samples
samples[i] = int16(val)
}
return samples
}